
Chapter 1

Computer Abstractions and
Technology

The Computer Revolution

› Progress in computer technology
– Underpinned by Moore’s Law

› Makes novel applications feasible
– Computers in automobiles

– Cell phones

– Human genome project

– World Wide Web

– Search Engines

› Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

«the number of transistors in an IC doubles every

two years»

Classes of Computers

› Personal computers
– General purpose, variety of software

– Subject to cost/performance tradeoff

› Server computers
– Network based

– High capacity, performance, reliability, dependability

– Range from small servers to building sized

Classes of Computers

› Supercomputers
– High-end scientific and engineering calculations

– Highest capability
› represented a small fraction of the overall computer

market, but share is increasing…

› Embedded computers
– Hidden as components of systems

– Stringent power/performance/cost constraints

– Real-time and dependability requirements

The PostPC Era

› Personal Mobile Device (PMD)
– Battery operated

– Connects to the Internet

– Hundreds of dollars

– Smart phones, tablets, electronic glasses

› Cloud computing
– Warehouse Scale Computers (WSC)

– Software as a Service (SaaS)

– Portion of software run on a PMD and a portion run
in the Cloud

– Amazon, Microsoft, Google

The PostPC Era

Data Center

Microsoft Data Center eastern US - 2017

Getting bigger

Planned expansion: 2km long…

Motivation for Course

› In short…

› Compute systems are pervasive and ubiquitous
in all aspects of our everyday’s life

› The study of how computers are architected
and programmed is fundamental in a world
(and a market) that is dominated by such
technology

What You Will Learn

› The compute abstraction
– From logic circuits to CPUs

› The hardware/software interface
– The instruction set architecture (ISA)

› How programs are translated into the machine
language
– And how the hardware executes them

› What determines program performance
– And how it can be improved

› How hardware designers improve performance

› What is parallel processing

Eight Great Ideas

› Design for Moore’s Law

› Use abstraction to simplify design

› Make the common case fast

› Performance via parallelism

› Performance via pipelining

› Performance via prediction

› Hierarchy of memories

› Dependability via redundancy

§
1
.2

 E
ig

h
t G

re
a
t Id

e
a
s
 in

 C
o
m

p
u
te

r A
rc

h
ite

c
tu

re

Below Your Program

› Application software
– Written in high-level language

› System software
– Compiler: translates HLL code to

machine code

– Operating System: service code
› Handling input/output

› Managing memory and storage

› Scheduling tasks & sharing resources

› Hardware
– Processor, memory, I/O controllers

§
1
.3

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Levels of Program Code

› High-level language
– Level of abstraction closer

to problem domain

– Provides for productivity
and portability

› Assembly language
– Textual representation of

instructions

› Hardware representation
– Binary digits (bits)

– Encoded instructions and
data

Understanding Performance

What determines the performance of a program?

› Algorithm
– Determines number of operations executed

› Programming language, compiler, architecture
– Determine number of machine instructions executed

per operation

› Processor and memory system
– Determine how fast instructions are executed

› I/O system (including OS)
– Determines how fast I/O operations are executed

The HW/SW interface

Components of a Computer

› Same components for
all kinds of computer
– Desktop, server,

embedded

› Input/output includes
– User-interface devices

› Display, keyboard, mouse

– Storage devices
› Hard disk, CD/DVD, flash

– Network adapters
› For communicating with

other computers

§
1
.4

 U
n
d
e
r th

e
 C

o
v
e
rs

Touchscreen

› PostPC device

› Supersedes keyboard
and mouse

› Resistive and Capacitive
types
– Most tablets, smart

phones use capacitive

– Capacitive allows multiple
touches simultaneously

Through the Looking Glass

› LCD screen: picture elements (pixels)
– Mirrors content of frame buffer memory

Opening the Box

I/O: capacitive multitouch LCD

screen, front/rear camera,

microphone, headphone jack,

speakers, accelerometer, gyroscope,

Wi-Fi, Bluetooth

Battery

Computer board

Apple A532 GB flash
Power, I/O

controllers

Inside the Processor (CPU)

› Datapath: performs operations on data

› Control: sequences datapath, memory, ...

› Cache memory
– Small fast SRAM memory for immediate access to

data

– SRAM is faster but less dense, and hence more
expensive, than DRAM

Inside the Processor

› Apple A5

• 12.1 by 10.1 mm

• 45nm technology

• 2xARM @ 1GHz

• PowerVR GPU

• 512 MiB DRAM

Abstractions

› Abstraction helps us deal with complexity
– Hide lower-level detail

› Instruction set architecture (ISA)
– The hardware/software interface

› Application binary interface
– The ISA plus system software interface

› Implementation
– The details underlying and interface

A Safe Place for Data

› Volatile main memory
– Loses instructions and data when power off

› Non-volatile secondary memory
– Magnetic disk

– Flash memory

– Optical disk (CDROM, DVD)

Networks

› Communication, resource sharing, nonlocal access

› Local area network (LAN)
› Ethernet (10/100 Gbit/s)

› Wide area network (WAN): the Internet

› Wireless network (IEEE 802.11)
› WiFi, Bluetooth → 1-100 Mbit/s

Technology Trends

› Electronics technology
continues to evolve
– Increased capacity and

performance

– Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2013 Ultra large scale IC 250,000,000,000

DRAM capacity

§
1
.5

 T
e
c
h
n
o
lo

g
ie

s
 fo

r B
u
ild

in
g
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

e
m

o
ry

4x every 3y

Semiconductor Technology

› Silicon: semiconductor

› Add materials to transform
properties:
– Conductors

› microscopic copper or aluminum wire

– Insulators
› plastic sheathing or glass

– Switch
› Transistor

10 µm – 1971

6 µm – 1974

3 µm – 1977

1.5 µm – 1982

1 µm – 1985

800 nm – 1989

600 nm – 1994

350 nm – 1995

250 nm – 1997

180 nm – 1999

130 nm – 2001

90 nm – 2004

65 nm – 2006

45 nm – 2008

32 nm – 2010

22 nm – 2012

14 nm – 2014

10 nm – 2017

7 nm – ~2019

5 nm – ~2021

Semiconductor

Manufacturing

Process

Atom size is 20-200 pm

https://en.wikipedia.org/wiki/10_%C2%B5m_process
https://en.wikipedia.org/wiki/6_%C2%B5m_process
https://en.wikipedia.org/wiki/3_%C2%B5m_process
https://en.wikipedia.org/wiki/1.5_%C2%B5m_process
https://en.wikipedia.org/wiki/1_%C2%B5m_process
https://en.wikipedia.org/wiki/800_nanometer
https://en.wikipedia.org/wiki/600_nanometer
https://en.wikipedia.org/wiki/350_nanometer
https://en.wikipedia.org/wiki/250_nanometer
https://en.wikipedia.org/wiki/180_nanometer
https://en.wikipedia.org/wiki/130_nanometer
https://en.wikipedia.org/wiki/90_nanometer
https://en.wikipedia.org/wiki/65_nanometer
https://en.wikipedia.org/wiki/45_nanometer
https://en.wikipedia.org/wiki/32_nanometer
https://en.wikipedia.org/wiki/22_nanometer
https://en.wikipedia.org/wiki/14_nanometer
https://en.wikipedia.org/wiki/10_nanometer
https://en.wikipedia.org/wiki/7_nanometer

Manufacturing ICs

› One layer of transistors and 2-8 levels of metal
conductor, separated by layers of insulators

› Yield: proportion of working dies per wafer

~25cm

2mm

thick

Intel Core i7 Wafer

› 300mm wafer, 280 chips, 32nm technology

› Each chip is 20.7 x 10.5 mm

Integrated Circuit Cost

› The cost of an integrated circuit rises quickly as the
die size increases, due both to the lower yield and to
the fewer dies that fit on a wafer.

› Nonlinear relation to area and defect rate
– Wafer cost and area are fixed
– Defect rate determined by manufacturing process
– Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost

+
=




=

Defining Performance

› Which airplane has the best performance?

§
1
.6

 P
e
rfo

rm
a
n
c
e

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

Response Time and Throughput

› Response time
– How long it takes to do a task

› Throughput
– Total work done per unit time

› e.g., tasks/transactions/… per hour

› How are response time and throughput
affected by
– Replacing the processor with a faster version?

– Adding more processors?

› We’ll focus on response time for now…

Relative Performance

› Define Performance = 1/Execution Time

› “X is n time faster than Y”

› Example: time taken to run a program
– 10s on A, 15s on B

– Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

– So A is 1.5 times faster than B

n== XY

YX

time Executiontime Execution

ePerformancePerformanc

Measuring Execution Time

› Elapsed time
– Total response time, including all aspects

› Processing, I/O, OS overhead, idle time

– Determines system performance

› CPU time
– Time spent processing a given job

› Discounts I/O time, other jobs’ shares

– Comprises user CPU time and system CPU time

– Different programs are affected differently by CPU
and system performance

CPU Clocking

› Operation of digital hardware governed by a
constant-rate clock

› Clock period: duration of a clock cycle
– e.g., 250ps = 0.25ns = 250×10–12s

› Clock frequency (rate): cycles per second
– e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Clock (cycles)

Data transfer

and computation

Update state

Clock period

CPU Time

› Performance improved by
– Reducing number of clock cycles

– Increasing clock rate

– Hardware designer must often trade off clock rate against
cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

CPU Time Example

› Computer A: 2GHz clock, 10s CPU time

› Designing Computer B
– Aim for 6s CPU time

– Can do faster clock, but causes 1.2 × clock cycles

› How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

=


=


=

==

=


==

Instruction Count and CPI

› Instruction Count for a program
– Determined by program, ISA and compiler

› Average cycles per instruction
– Determined by CPU hardware

– If different instructions have different CPI
› Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock


=

=

=

CPI Example

› Computer A: Cycle Time = 250ps, CPI = 2.0

› Computer B: Cycle Time = 500ps, CPI = 1.2

› Same ISA

› Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=



=

==

=

==

=

A is faster…

…by this much

CPI in More Detail

› If different instruction classes take different
numbers of cycles

› Weighted average CPI


=

=
n

1i

ii)Count nInstructio(CPICycles Clock


=









==

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

CPI Example

› Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

◼ Sequence 1: IC = 5

◼ Clock Cycles
= 2×1 + 1×2 + 2×3
= 10

◼ Avg. CPI = 10/5 = 2.0

◼ Sequence 2: IC = 6

◼ Clock Cycles
= 4×1 + 1×2 + 1×3
= 9

◼ Avg. CPI = 9/6 = 1.5

Performance Summary

› Performance depends on
– Algorithm: affects IC, possibly CPI

– Programming language: affects IC, CPI

– Compiler: affects IC, CPI

– Instruction set architecture: affects IC, CPI, Tc

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =

Power Trends

› In CMOS IC technology

§
1
.7

 T
h
e
 P

o
w

e
r W

a
ll

FrequencyVoltageload CapacitivePower 2 =

×1000×30 5V → 1V

Reducing Power

› Suppose a new CPU has
– 85% of capacitive load of old CPU

– 15% voltage and 15% frequency reduction

› The power wall
– We can’t reduce voltage further

– We can’t remove more heat

› How else can we improve performance?

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new ==



=

Uniprocessor Performance
§
1
.8

 T
h
e
 S

e
a
 C

h
a
n
g
e
: T

h
e
 S

w
itc

h
 to

 M
u
ltip

ro
c
e
s
s
o
rs

Constrained by power, instruction-level parallelism,

memory latency

Multiprocessors

› Multicore microprocessors
– More than one processor per chip

› Requires explicitly parallel programming
– Compare with instruction level parallelism

› Hardware executes multiple instructions at once

› Hidden from the programmer

– Hard to do
› Programming for performance

› Load balancing

› Optimizing communication and synchronization

The multicore revolution

SPEC CPU Benchmark

› Programs used to measure performance
– Supposedly typical of actual workload

› Standard Performance Evaluation Corp (SPEC)
– Develops benchmarks for CPU, I/O, Web, …

› SPEC CPU2006
– Elapsed time to execute a selection of programs

› Negligible I/O, so focuses on CPU performance

– Normalize relative to reference machine
– Summarize as geometric mean of performance

ratios
› CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution
=

CINT2006 for Intel Core i7 920

SPEC Power Benchmark

› Power consumption of server at different
workload levels
– Performance: ssj_ops/sec

– Power: Watts (Joules/sec)

















= 

==

10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall

SPECpower_ssj2008 for Xeon X5650

Pitfall: Amdahl’s Law

› Improving an aspect of a computer and
expecting a proportional improvement in
overall performance

› Example: multiply accounts for 80s/100s
– How much improvement in multiply performance to

get 5× overall?

› Corollary: make the common case fast

§
1
.1

0
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

20
80

20 +=
n

◼ Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T +=

Fallacy: Low Power at Idle

› Look back at i7 power benchmark
– At 100% load: 258W

– At 50% load: 170W (66%)

– At 10% load: 121W (47%)

› Google data center
– Mostly operates at 10% – 50% load

– At 100% load less than 1% of the time

› Consider designing processors to make power
proportional to load

Pitfall: MIPS as a Performance Metric

› MIPS: Millions of Instructions Per Second
– Doesn’t account for

› Differences in ISAs between computers

› Differences in complexity between instructions

› CPI varies between programs on a given CPU

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS


=




=


=

Concluding Remarks

› Cost/performance is improving
– Due to underlying technology development

› Hierarchical layers of abstraction
– In both hardware and software

› Instruction set architecture
– The hardware/software interface

› Execution time: the best performance measure

› Power is a limiting factor
– Use parallelism to improve performance

§
1
.1

1
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

