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Assignment 3
▪ Extending the due date to 11:59 pm on March 6th

(was previously March 2nd) 

▪ This is the day of Exam I
- Previous deadline forced you to submit, then study for three days
- Intent is to allow you to manage your time accordingly
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Assignment 3 primer
▪ Run programs on Blacklight using a job queue system

- May have to wait a few minutes for completion

Head node
(shell for devel, 
compile, test)

job queue

Blacklight Supercomputer

blacklight.psc.teragrid.org

job = {program, args, num_cpus}
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OpenMP #include	
  <omp.h>

void	
  main()	
  	
  {

	
  	
  	
  	
  int	
  nthreads,	
  tid;

	
  	
  	
  	
  /*	
  Check	
  how	
  many	
  processors	
  are	
  available	
  */

	
  	
  	
  	
  printf("There	
  are	
  %d	
  processors\n",	
  omp_get_num_procs());

	
  	
  	
  	
  /*	
  Set	
  the	
  number	
  of	
  threads	
  to	
  4	
  */
	
  	
  	
  	
  omp_set_num_threads(4);
	
  	
  	
  	
  

	
  	
  	
  	
  /*	
  Fork	
  a	
  team	
  of	
  threads	
  giving	
  them	
  their	
  own
	
  	
  	
  	
  	
  	
  	
  copies	
  of	
  variables	
  */

#pragma	
  omp	
  parallel	
  private(nthreads,	
  tid)
	
  	
  	
  	
  {

	
  	
  	
  	
  	
  	
  	
  	
  /*	
  Obtain	
  and	
  print	
  thread	
  id	
  */
	
  	
  	
  	
  	
  	
  	
  	
  tid	
  =	
  omp_get_thread_num();
	
  	
  	
  	
  	
  	
  	
  	
  printf("Hello	
  World	
  from	
  thread	
  =	
  %d\n",	
  tid);

	
  	
  	
  	
  	
  	
  	
  	
  /*	
  Only	
  master	
  thread	
  does	
  this	
  */
	
  	
  	
  	
  	
  	
  	
  	
  if	
  (tid	
  ==	
  0)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nthreads	
  =	
  omp_get_num_threads();
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  printf("Number	
  of	
  threads	
  =	
  %d\n",	
  nthreads);
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }

	
  	
  	
  	
  }	
  	
  /*	
  All	
  threads	
  join	
  master	
  thread	
  and	
  terminate	
  */

}

▪ API/runtime for writing parallel programs

- C compiler directives

- Runtime library routines

- Builtin environment variables 

▪ All programs start off executing serially

▪ Fork-join model of parallelism

sequential execution
(just regular C code)

SPMD parallel 
execution
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OpenMP #include	
  <omp.h>

int	
  numProcs	
  =	
  10;

//	
  Set	
  the	
  number	
  of	
  threads	
  for	
  the	
  parallel	
  region
omp_set_num_threads(numProcs);

//	
  Fork	
  a	
  team	
  of	
  threads	
  to	
  execute	
  the	
  for	
  loop	
  in
//	
  parallel
#pragma	
  omp	
  parallel	
  for	
  default(shared)	
  private(i)	
  schedule(dynamic)
	
  	
  	
  	
  for	
  (i=0;	
  i	
  <	
  size;	
  i++)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  c[i]	
  =	
  a[i]	
  +	
  b[i];

	
  	
  	
  	
  }	
  //	
  Implied	
  barrier:	
  all	
  threads	
  join	
  master	
  thread	
  and	
  
	
  	
  	
  	
  	
  	
  //	
  terminate

SPMD parallel 
execution

sequential execution
(just regular C code)

Dynamically assign iterations to pool of 10 threads
By default, treat variables as shared (like ISPC uniform)
Loop counter variable i is private per thread

Many ways to tell OMP how to assign iterations to threads (static assignment, blocked, interleaved, etc).  See docs.
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OpenMP #include	
  <omp.h>

omp_lock_t	
  indexLock;

void	
  SlaveStart()
{
	
  	
  	
  	
  //	
  acquire	
  lock
	
  	
  	
  	
  omp_set_lock(&indexLock);

	
  	
  	
  	
  //	
  DO	
  STUFF	
  THAT	
  REQUIRES	
  MUTUAL	
  EXCLUSION!

	
  	
  	
  	
  //	
  release	
  lock
	
  	
  	
  	
  omp_unset_lock(&gm-­‐>indexLock);

	
  	
  	
  	
  //	
  Stop	
  at	
  barrier	
  to	
  synchronize,	
  not	
  necessary
	
  	
  	
  	
  //	
  in	
  this	
  example	
  (just	
  an	
  example	
  of	
  barrier	
  syntax)
#pragma	
  omp	
  barrier
}

void	
  main()	
  {
	
  	
  	
  //	
  Initialize	
  the	
  lock
	
  	
  	
  omp_init_lock(&gm-­‐>indexLock);

#pragma	
  omp	
  parallel	
  
	
  	
  	
  	
  {	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  //	
  Every	
  thread,	
  executes	
  SlaveStart
	
  	
  	
  	
  	
  	
  	
  	
  SlaveStart();
	
  	
  	
  	
  }	
  	
  

	
  	
  	
  //	
  Uninitialize	
  the	
  lock
	
  	
  	
  omp_destroy_lock(&indexLock);
}

Basic synchronization example
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Assignment 3
▪ Interviewing undergrad problem

- (a.k.a wandering salesman problem)

▪ Given: N cities + distances between cities

▪ Compute: shortest path starting at "rst city, 
that visits all cities
- You get a job. So you don’t return home.
- Traveling salesman returns home.

Distances between cities 1-4

Enumeration of paths
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Today: what you should know

▪ What limits the scalability of snooping-based approaches to 
cache coherence

▪ How does a directory-based scheme avoid these problems?

▪ How can the storage overhead of the directory be reduced? 
(and at what cost?) 
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Implementing cache coherence

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

Last two lectures: snooping cache 
coherence implementations: relied on 
broadcast

Every time there is a cache miss, must 
communicate with all other caches!
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Problem: scaling cache coherence to large machines

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

Recall non-uniform memory access (NUMA) shared memory systems
By distributing memories near the processors, can increase scalability: higher aggregate BW 
and reduced latency (especially when there is locality in the application)

But... efficiency of NUMA system does little good if the coherence protocol can’t also be scaled!

Some terminology:

▪ cc-NUMA = “cache-coherent, non-uniform memory access”

▪ Distributed shared memory system (DSM): cache coherent, shared address space 
architecture implemented by physically distributed memories
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One possible solution: hierarchy of snooping

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Processor Processor Processor Processor

Interconnect

Processor Processor Processor Processor

Interconnect

Interconnect
Memory Memory

Another example: with memory localized with the groups of processors, rather than centralized 
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One possible solution: hierarchical snooping

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Advantages

▪ Relatively simple to build (already have to deal with similar issues due to multi-level caches)

Disadvantages

▪ The root becomes a bottleneck (low “bisection bandwidth”)

▪ Larger latencies than direct networks

▪ Does not apply to more general network topologies (meshes, cubes)
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Scalable cache coherence using directories
▪ In a snooping scheme, the broadcast mechanism is used by 

caches to determine the state of a block in the other caches

▪ Alternative idea: avoid broadcast by storing this information 
about the block in a “directory”
- Caches look up information from the directory as necessary
- Cache coherence is maintained by point-to-point messages between the caches 

(no reliable on broadcast mechanisms) 
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A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

. . 
.

One cache line of memory

One directory entry per 
cache line of memory

P presence bits: indicate whether processor P 
has line in its cache

Dirty bit: indicates block is dirty 
in one of the processors’ caches

One cache line of memory
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A directory for each node

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

▪ “Home node” of a block: node whose memory node is allocated in
- Example: node 1 is the home node of the orange block, node 2 is the home node of the blue block

▪ “Requesting node”: node containing processor requesting block
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Example 1: read miss to clean block

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is not dirty

▪ Read miss message sent to home node of the requested block

▪ Home directory checks entry for block

1. Request: read miss msg 
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Example 1: read miss to clean block

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is not dirty

▪ Read miss message sent to home node of the requested block

▪ Home directory checks entry for block
▪ If dirty bit for block is OFF, respond with contents from memory, set presence[1] to true  

2. Response (block data from memory)

1. Request: read miss msg 
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Example 2: read miss to dirty block

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contents in P3’s cache)

▪ If dirty bit is ON, then data must be sourced by another processor

▪ Home node must tell requesting node where to "nd data

▪ Responds with message providing identity of block owner (“get it from P3”)  

2. Response: owner id

1. Request: read miss msg
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Example 2: read miss to dirty block

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contents in P3’s cache)

1. If dirty bit is ON, then data must be sourced by another processor

2. Home node responds with message providing identity of block owner  

3. Requesting node requests data from owner

4. Owner responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data
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Example 2: read miss to dirty block

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contents in P3’s cache)

1. If dirty bit is ON, then data must be sourced by another processor
2. Home node responds with message providing identity of block owner  
3. Requesting node requests data from owner
4. Owner responds to requesting node, changes state in cache to SHARED
5. Owner also responds to home node, home clears dirty and updates presence bits

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision
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Example 3: write miss

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

1. Request: write miss msg
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Example 3: write miss

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

1. Request: write miss msg

2. Response: sharer ids + data
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Example 3: write miss

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)
2. Response: sharer ids + data
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Example 3: write miss

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P3

4b. Response: ack from P2

After receiving both invalidation acks, P1 can perform write
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Advantage of directories
▪ On reads, directory tells requesting node exactly where to get 

the block from
- Either from home node (if the block is clean)
- Or from owning node (if the block is dirty)
- Either way, it’s point-to-point communication

▪ On writes, the advantage of directories depends on the 
number of sharers
- In the limit, if all caches are sharing data, all caches must be 

communicated with (just like broadcast)
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Cache invalidation patterns
64 processor system

Barnes-Hut

LU

Ocean

0 1 2 3 4 5 6 7

8 t
o 1

1

12
 to

 15

16
 to

 19

20
 to

 23

24
 to

 27

28
 to

 31

32
 to

 35

36
 to

 39

40
 to

 43

44
 to

 47

48
 to

 51

52
 to

 55

56
 to

 59

60
 to

 63

In general, at the time of 
writes, only a few processors 
share the block

Also, the number of sharers 
increases slowly with P (good!)
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In general, only a few sharers during a write 
▪ Access patterns

- Mostly-read objects: lots of sharers but writes are infrequent, so minimal impact 
on performance (e.g., root node in Barnes-Hut)

- Migratory objects: very few sharers, count does not scale with number of 
processors 

- Frequently read/written objects: frequent invalidations, but few of then because 
sharer count cannot build up between invalidations (e.g, shared task queue)

- Low-contention locks: no problem, infrequent invalidations. (high-contention 
locks do present a challenge) 

▪ Implication 1: directories useful for limiting amount of traffic
▪ Implication 2: suggests ways to optimize directory 

implementation (reduce storage overhead)
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Full bit vector approach
▪ Recall: one presence bit per node

▪ Storage overhead proportion to P*M
- P = number of nodes
- M = number of blocks in memory

▪ Scales poorly with P
- Assume 64 byte cache line size
- 64 nodes →12% overhead
- 256 nodes → 50% overhead
-  1024 nodes → 200% overhead

. . 
.

P

M

. . .
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Reducing storage overhead of directory
▪ Optimizations on full-bit vector scheme

- Increase cache block size (reduce M term)
- What are possible problems with this approach?

(consider graphs from last lecture)
- Place multiple processors in a “node” (reduce P term)

- Need one directory bit per node, not bit per processor
- Hierarchical: use snooping protocol amongst processors in a node

▪ Alternative schemes
- Limited pointer schemes (reduce P)
- Sparse directories (reduce M)
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Limited pointer schemes
Since data is expected to only be in a few caches at once, a limited number of pointers 
per directory entry should be sufficient (don’t need information about all nodes)

Ocean

Example: 1024 processor system
Full bit vector scheme needs 1024 bits per block
Instead, can store 10 pointers to nodes holding the block (log2(1024)=10 bits per pointer)
In practice, our workload evaluation says we can get by with less than 10
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Managing over$ow in limited pointer schemes

▪ Broadcast
- When more than max number of sharers, revert to broadcast

▪ No broadcast
- Do not allow more than a max number of sharers
- On over$ow, newest sharer replaces an existing one (invalidate the old sharer)

▪ Coarse vector
- Change representation so that each bit corresponds to K nodes
- On write, invalidate all nodes a bit belongs to

▪ Dynamic pointers
- Hardware maintains a pool of pointers (free list)
- Manages allocation of pointers to directory blocks

Many possible approaches
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Optimizing for the common case
Limited pointer schemes are a great example of understanding and optimizing 

for the common case:

1. Workload driven observation: in general the number of sharers is low

2. Make the common case simple and fast: array of pointers for "rst N sharers

3. Uncommon case is still handled correctly, just with a slower, more 
complicated mechanism (the program still works!)

4. Extra expense is tolerable, since it happens infrequently

Aside:
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Limiting size of directory: sparse directories
▪ Majority of memory is NOT resident in cache.  Coherence protocol only needs 

sharing information for cached blocks
- So most directory entries are “idle” most of the time
- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are idle



 (CMU 15-418, Spring 2012)

Sparse directories
Directory at home node maintains only pointer to one 
node caching block.
Pointer to next node stored in the cache line

. . 
.M

Processor cache: node 0

pre ptr

block data

Directory (home node for block)

Processor cache: node 1

next ptr

Processor cache: node 2

On read miss: add requesting node to head of list
On write miss: propagate invalidations along list
On evict: need to patch up list (linked list removal)
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Sparse directories: scaling properties
Good: 

- Low memory storage overhead (one pointer per block)

-  Storage proportional to cache size (and list stored in SRAM)

- Traffic on write proportional to number of sharers
. . 

.M

Processor cache: node 0

pre ptr

block data

Directory (home node for block)

Processor cache: node 1

next ptr

Processor cache: node 2

Bad: 
- Latency of write proportional to number of sharers

- Complexity
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Summary: directories
▪ Primary observation: broadcast doesn’t scale, but luckily we 

don’t need to broadcast to ensure coherence because often 
the number of caches containing a block is small

▪ Instead of snooping, just store the list of sharers in a 
“directory” and look it up

▪ One challenge: reducing overhead of directory storage
- limited pointer schemes: exploit fact the most processors not sharing
- sparse directory schemes: exploit fact that most blocks are not in cache 


