
19.1

Parte 19

Processes

[Michelangelo – La Creazione di Adamo, 1511]

19.2

Process

● The fundamental concept in any operating
system is the “process”
– a process is an executing program
– an OS can execute many processes at the same

time → Concurrency

19.3

Process traces

● When a computer executes a sequential
process, it goes through states

● At each step, the state of the process is
changed

● State:
– set of processor registers
– set of process variables

19.4

Process history

● A program for computing GCD

int gcd(int a, int b)
{

while (a!=b) {
if (a < b) b = b – a;
else a = a – b;

}
return a;

}

335

364

963

1562

15211

baSteps

 Every time the program is launched, a new process
is generated and run

19.5

Process states

● The OS can execute many processes at the
same time

● Each process can be in one of the following
states:
– starting (the process is being created)
– ready (the process is ready to be executed)
– executing (the process is executing)
– blocked (the process is waiting on a condition)
– terminating (the process is about to terminate)

19.6

Process states

a) Creation the process is created
b) Dispatch the process is selected to execute
c) Preemption the process leaves the processor
d) Wait on condition the process is blocked on a condition
e) Condition true the process is unblocked
f) Exit the process terminates

start ready running

terminateblocked

a

b

c

d
e

f

19.7

Process queues

● Single processor

CPU

ready queue
admit

preemption

dispatch

blocked queue

wait conditionevent occurs

19.8

Process queues

● Multi-processor with migration

CPU

ready queue
admit

preemption

dispatch

blocked queue

wait conditionevent occurs

CPU

CPU

19.9

Multiple blocking queues

CPU

ready queue
admit

preemption

dispatch

wait condition 1event occurs

wait condition 2event occurs

wait condition 3event occurs

19.10

Process Control Block

● Contains all data concerning a process
● PCBs are stored in the Process Table

PID
PPID
UID
CR
IP
SP

Other Reg.
State

Priority
Time left

...

Process Table

remaining time

priority
process state (ready, running, ...)

processor registers
stack pointer

instruction pointer
control register

user identifier
parent process
process identifier

19.11

The role of PCB

● PCB is a critical point of any OS
● Accessed by multiple OS routines:

– the scheduler
– the Virtual memory
– the Virtual File System
– interrupt handlers (I/O devices)
– ...

● It can only be accessed by the OS!
● The user can access some of the information in

the PCB by using appropriate system calls

19.12

Memory layout of a Process

● In some system, the PCB is in the “other
data” section
– for example, Linux

text

initialized data

BSS

stack

heap

other data

Process heap (for dynamic memory)

Process stack

Data NOT initialized by the loader

Data initialized by the loader

Process code

19.13

Memory protection

● Every process has its own memory space
– Part of it is “private to the process”
– Part of it can be shared with other processes
– Two processes of the same program may share the

TEXT part
– Two processes communicating by shared memory

may share a portion of the data segment

text

Initialized
Data

BSS

stack

heap

other data

Initialized
Data

stack

heap

other data

19.14

Memory protection

● By default, two processes cannot share their
memory
– If one process tries to access a memory location

outside its space, a processor exception is raised
(trap) and the process is terminated

– The famous “Segmentation Fault” error!!
– Segmentation fault is also related to the Virtual

Memory

19.15

Modes of operation (revised)

● Every modern processor supports at least two modes
of operation
– User
– Supervisor

● A bit in the Control Register (CR) tells in which mode
the processor is running

● OS routines run in supervisor mode
– They need to operate freely on every part of the

hardware with no restriction
● User code runs in user mode

● Mode switch

– From user to supervisor mode or viceversa

19.16

Mode switch

● It can happen in one of the following cases
– Interrupts or traps

● In this case, before calling the interrupt handler, the processor
goes in supervisor mode and disables interrupts

● Traps are interrupts that are raised when a critical error occurs
(e.g., division by zero, page fault, or for debugging purposes)

● Returning from the interrupt restores the previous mode

– Invoking a special instruction
● This special instruction is used to implement system primitives
● In the x86 family, it is the INT instruction
● This instruction is similar to an interrupt
● It takes a number that identifies a “service”
● All OS calls are invoked by calling INT
● Returning from the handler restores the previous mode

19.17

• Saves parameters on the stack
• Executes INT 21h

1. Change to supervisor mode
2. Save context
3. Execute the function open
4. Restores the context
5. IRET

• Back to user mode
• Delete parameters from the stack

Example of system call

● The “open” system call can potentially block the process!
– in that case we have a “process switch”

int fd,n;
char buff[100];

fd = open(“Dummy.txt”, O_RDONLY);
n = read(fd, buff, 100);

19.18

Process switch

● It happens when
– The process has been “preempted” by another

higher priority process
– The process blocks on some condition
– In time-sharing systems, the process has completed

its “round” and it is the turn of some other process

● We must be able to restore the process later
– Therefore, we must save its state before switching

to another process

19.19

The “exec” pointer

● Every OS has one pointer (“exec”) to the PCB of
the running process
– The status of the “exec” process is RUNNING

● When a process switch occurs:
– The status of the “exec” process is changed to

BLOCKING or READY
– The scheduler is called
– The scheduler selects another “exec” from the ready

queue

19.20

System call with process switch

● Saves parameters on stack
● Then:

– Change to supervisor mode
– Save context in the PCB of “exec” (including SP)
– The process changes status and goes into

BLOCKING mode
– Calls the scheduler

● Moves “exec” into the blocking queue
● Selects another process to go into RUNNING mode
● Now exec points to the new process

– Restores the exec process
● Restores the context of the “exec” PCB

– Including SP (that means the stack is changed)
● IRET

– Returns to where the new process was interrupted

19.21

Process switches and stack
changes

exec

Param.
CR
IP

PID
PPID
UID

CR
IP
SP

Other Reg.

State
Priority

Time left
...

PCB

Stack

CR
IP
SP

Other Reg.

Param.
CR
IP

PID
PPID
UID

CR
IP
SP

Other Reg.

State
Priority

Time left
...

PCB

Stack

Blocking Blockingexec

CR
IP
SP

Other Reg.

19.22

Process switch

● This is only an example
– Every OS has little variations on the same theme
– For example, in most cases, registers are saved on

the stack, not on the PCB
● You can try and look into some real OS

– Linux
– Free BSD
– every OS is different!

19.23

CPUCPUCPUCPU

Time sharing systems

● In time sharing systems,
– Every process can execute for at most one round

● for example, 10msec

– At the end of the round, the processor is given to
another process

Process
Switch

Ready queue

Timer
interrupt

19.24

Interrupt with process switch

● When an interrupt arrives:
– change to supervisor mode
– save CR and IP
– save processor context
– execute the interrupt handler
– call the scheduler

● this may change the “exec” pointer

– IRET

19.25

Causes for a process switch

● A process switch can be
– Voluntary: the process calls a blocking primitive

● For example, by calling a read() on a blocking device

– Non-voluntary: an interrupt arrives that causes the
process switch

● It can be the timer interrupt in time-sharing systems
● It can be an I/O device which unblocks a blocked process

with a higher priority

19.26

Processes

Two aspects can be distinguished in a process:
● Resource ownership

– A process includes a virtual address space, a process
image (code + data)

– It is allocated a set of resources, like file descriptors, I/O
channels, etc.

● Scheduling/execution
– The execution of a process follows an execution path,

and generates a trace (sequence of internal states)
– It has a state (ready, running, etc.) and scheduling

parameters (priority, time left in the round, etc.)

19.27

Multi-threading

● Many OS separate these aspects, by providing
the concept of thread

● The process is the “resource owner”
● The thread is the “scheduling entity”

– One process can consist of one or more threads
– Threads are sometime called (improperly)

lightweight processes
– Therefore, one process can have many different

(and concurrent) traces of execution!
– Each thread belongs to exactly one process and no

thread can exist outside a process

19.28

Single threaded Process Model

● In the single-threaded process model, one
process has only one thread
– one address space
– one stack
– one PCB only

Process Control
Block

User address
space

user
stack

kernel
stack

19.29

Multi-threaded process model

● In the multi-threaded process
model, each process can have
many threads
– One address space
– One PCB but multiple TCBs

(Thread Control blocks)
– Many stacks
– The threads are scheduled

directly by the global scheduler

Process Control
Block

User address
space

user
stack

kernel
stack

Thread
Control
Block

thread

user
stack

kernel
stack

Thread
Control
Block

thread

user
stack

kernel
stack

Thread
Control
Block

thread

19.30

Threads

● Generally, processes do not share memory
– To communicate between process, it is necessary to

use OS primitives
– Process switch is more complex because we have

to change address space
● Two threads in the same process share the

same address space
– They can access the same variables in memory
– Communication between threads is simpler
– Thread switch has less overhead

19.31

Processes vs. Threads

● Processes are mainly used to compete for some
resource
– For example, two different users run two separate

applications that need to print a file
– The printer is a shared resource, the two processes

compete for the printer
● Threads are mainly used to collaborate to some goal

– For example, a complex calculation can be split into two
parallel phases, where each thread does one phase

– In a multi-processor machine the two threads go in
parallel and the calculation becomes faster

19.32

1. wait

Example (1)

 Consider a Word Processor application
 Main cycle

1. Wait for input from the keyboard
2. Update the document
3. Format the document
4. Check for syntax errors
5. Check for other events (i.e. temporary save)
6. Return to 1

 One single process would be a waste of time!

2. update

3. format

4. syntax

5. Other events

1. wait

19.33

Example (2)

● Problems
– Most of the time, the program waits for input

● Idea: while waiting we could perform some other task
– Activities 3 and 4 (formatting and syntax checking) are

very time consuming
● Idea: let’s do them while waiting for input

● Solution with multiple processes
– One process waits for input
– Another process periodically formats the document
– A third process periodically performs a syntax checking
– A fourth process visualizes the document

Input
Process

Format
Process

Syntax
Process

Graphic
Process

19.34

Example (3)

● Problem with multiple processes
– All processes need to access the same data structure:

the document
– Which process holds the data structure?

● Solution 1: message passing
– A dedicated process holds the data, all the others

communicate with it to read/update the data
– Very inefficient!

Data
Server

Input
Process

Format
Process

Syntax
Process

Graphic
Process

19.35

Example (4)

● Solution 2: shared memory
– One process holds the data and makes that part of its

memory shareable with the others
– Still not very efficient:

● Many process switches
● Memory handling becomes very complex

19.36

Why using threads

● Speed of creation
– Creating a thread takes far less time than a process

● Speed of switching
– Thread switch is faster than process switch

● Shared memory
– Threads of the same process run in same memory space
– They can naturally access the same data!

DocumentProcess

Input
Process

Format
Process

Syntax
Process

Graphic
Process

19.37

Threads support in OS

● Different OS implement threads in different ways
– Some OS supports directly only processes

● Threads are implemented as “special processes”
– Some OS supports only threads

● Processes are threads’ groups
– Some OS natively supports both concepts

● for example Windows NT
● We will come back to this part later, after we

have studied the problem of synchronization
● For now, we abstract away the different

implementations

19.38

Summary

● Important concepts
– Process: provides the abstraction of memory space
– Thread: provide the abstraction of execution trace
– The scheduler manages threads!

● Processes do not normally share memory
● Two threads of the same process share memory
● Threads may communicate in different ways:

– Shared memory
– Message passing

● In the following, we will only refer to threads

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38

