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Abstract In scheduling hard-real-time systems, the primary objective is to meet all
deadlines. We study the scheduling of such systems with the secondary objective of
minimizing the duration of time for which the system locks each shared resource.
We abstract out this objective into the resource hold time (RHT)—the largest length
of time that may elapse between the instant that a system locks a resource and the
instant that it subsequently releases the resource, and study properties of the RHT.
We present an algorithm for computing resource hold times for every resource in a
task system that is scheduled using Earliest Deadline First scheduling, with resource
access arbitrated using the Stack Resource Policy. We also present and prove the
correctness of algorithms for decreasing these RHT’s without changing the semantics
of the application or compromising application feasibility.
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1 Introduction

Real-time systems were initially modeled as collections of relatively simple indepen-
dent recurring tasks executing on a simple shared preemptive platform. Given the
specifications of such a system, the objective was to ensure that all timing constraints
(usually, deadlines) were satisfied. Over time, this simple perspective has been gen-
eralized in several directions—for instance, more complex models for recurring tasks
have been introduced, and different tasks are able to interact with each other through
the sharing of (logical as well as physical) resources that allow exclusive access to
only one task at any point in time.

Even with all these generalizations, the primary objective in real-time systems de-
sign and analysis has remained the same—ensuring that no deadlines are missed.
A number of scheduling algorithms (such as earliest deadline first (EDF), rate-
monotonic (Rm) and deadline monotonic (Dm), etc.) and resource sharing proto-
cols (including the Priority Ceiling Protocol (PCP) and the Stack Resource Pol-
icy (SRP)) have been proposed and studied, for scheduling such general real-
time systems upon preemptive uniprocessor platforms. It has been shown that spe-
cific scheduling frameworks—combinations of scheduling algorithms and resource-
sharing protocols—are optimal under different constraints, meaning that if a set of
tasks with shared resources can be scheduled under a specified scheduling model
(periodic, sporadic, etc.), than it can also be scheduled with the optimal framework
under the same scheduling model. As an example, it has been proven (Baruah 2006)
that EDF + SRP is an optimal scheduling strategy in the sporadic task model. Using
EDF + SRP, it is therefore possible to schedule every feasible sporadic task set requir-
ing access to shared resources.1

However, while meeting deadlines remains a primary objective in many real-time
systems, more recent developments in real-time systems research have made certain
secondary objectives very important as well. For instance, portable embedded real-
time devices require that scheduling frameworks meet all deadlines while minimizing
energy consumption. For high-volume consumer electronics, where small savings in
per-unit cost translates into significant over-all savings, the goal may be to identify
the least powerful (expensive) platform on which all deadlines may be met. Both
these secondary objectives have been studied elsewhere; in this paper, we consider
another such secondary objective: to minimize the duration of time for which the task
system holds on to shared resources.

Motivation and significance This secondary objective is motivated by two very sig-
nificant recent developments in real-time and embedded systems design: open envi-
ronments, and multicore platforms.

1Each of the aforementioned resource-sharing protocols and the techniques presented in this paper assumes
that each resource is a serially-reusable non-preemptive shared resource. A task accessing a serially-
reusable non-preemptive shared resource relinquishes the resource only upon completion of execution on
the resource. Note that this does not prohibit processor preemption of a task holding the shared resource;
however, a task will not release the resource upon processor preemption. The term “serially-reusable non-
preemptive resource” has been adopted from Baker (1991).
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Open environments There has recently been much interest in the design and im-
plementation of open environments (Deng and Liu 1997) for real-time applica-
tions. In this setting, a real-time application consists of real-time task system, lo-
cal (application-specific) run-time scheduler, and a set of local shared resources.
An open environment allows for multiple independently developed and validated
real-time applications to co-execute upon a single shared platform. The open en-
vironment has a global run-time scheduler which arbitrates access to the platform
among the various applications; each application will use its local scheduler for de-
ciding which of its competing jobs executes each time the application is selected for
execution by the global scheduler. If an application is validated to meet its timing
constraints when executing in isolation, then an open environment that admits this
application (through a process of admission control) guarantees that it will continue
to meet its timing constraints upon the shared platform. Such open environments
are hence also often called “hierarchical” real-time environments. An example of a
hierarchical system is given by the two-level architecture proposed by Deng and Liu
(1997), where a global EDF scheduler is used, with a Total Bandwidth Server (Spuri
and Buttazzo 1996) for each application. Kuo and Li (1999) extended the model
to fixed priority global schedulers, using a Sporadic Server (Sprunt et al. 1989) for
each application. Both papers derive sufficient schedulability conditions. Saewong
et al. (2002) present a response time analysis for Deferrable Servers and Sporadic
Servers used in a hierarchical environment. Feng and Mok (2002) presented a gen-
eral methodology for hierarchical partitioning of a computational resource at arbi-
trary levels of the hierarchy, deriving simple sufficient schedulability test for any
scheduler at any level. Shin and Lee (2003) derived exact schedulability conditions
for EDF and fixed priority scheduling at local level. Lipari and Bini (2003) addressed
the problem of optimizing the server parameters given an application scheduled by
a local fixed priority scheduler. Davis and Burns (2005) developed response time
analysis for the schedulability of task systems scheduled under fixed priority servers
(Periodic, Sporadic or Deferrable). However, strictly speaking, the hierarchical ap-
proach used by Davis and Burns (2005) cannot be completely classified as an open
environment, since the temporal constraints of an application are not validated in
isolation.
Sharing of “global” resources (i.e., those resources that are used by multiple ap-
plications co-executing in the open environment) presents a major challenge to the
design and implementation of open environments. Clearly, a high-level scheduler
that arbitrates access to shared resources that are accessed by multiple applications
must have knowledge of how long each individual application may hold each global
resource. Furthermore, in order to minimize interference between different admitted
applications, it is desirable that each individual application minimizes the duration
of time for which it holds each shared resource. Open environment frameworks that
explicitly minimize and take into account each application’s resource usage have
been presented in Fisher et al. (2007a, 2007b) and Behnam et al. (2007); each of
these aforementioned frameworks make use of techniques presented in this paper.
Similar to the Hierarchical Stack Resource Protocol (Hsrp) proposed by Davis and
Burns in Davis and Burns (2006), the open environments of Fisher et al. (2007a,
2007b), and Behnam et al. (2007) use a high-level SRP used to arbitrate the access



Real-Time Syst

to resources shared among different applications. However, Fisher et al. (2007a,
2007b), and Behnam et al. (2007) differ from the solution adopted by Burns and
Davis, where each critical section is executed with local preemptions disabled, by
allowing local preemptions, when needed, even if a global resource is locked. This
modification is particularly useful for applications with a task with short period and
other tasks accessing a long global critical section: if the critical section is executed
non-preemptively, the task with low period would miss its deadline. The drawback
of this approach is that the time for which an application keeps a global resource
locked increases. To avoid the problem of budget exhaustion inside critical sections,
the open environment grants application locks for a global resource only when the
capacity of the corresponding server is at least equal to the maximum amount of
time the global resource could be held by that application. To optimally utilize the
available processing capacity avoiding over-dimensioned servers, it is therefore very
important to have low resource holding times. We will describe in this paper how
to compute these values, and will propose a shared resource policy that can be used
to reduce as much as possible the amount of time for which an application keeps a
resource locked, possibly executing it non-preemptively.

Multicore platforms Recent trends in chip design and computer architecture indi-
cate that most processor chips in the future will contain multiple computing “cores”
within them. Indeed, both Intel’s and AMD’s current top-of-the-line processors al-
ready contain four computing cores. Based upon fundamental technological barriers
and heat-dissipation issues, many technology forecasters predict that Moore’s law
will be satisfied in the future primarily by continually increasing the number of
computing cores per CPU, rather than by developing more powerful single cores.
In one approach that is being explored to exploit the tremendous computing capac-
ity that will become available in such multicore processors, the cores are partitioned
into different clusters and different task systems are executed simultaneously upon
each cluster. As with open environments, the sharing of global resources between
clusters present a major design challenge, since a system may be blocked from ex-
ecuting upon its cluster while waiting for some other system to release a locked
resource. To reduce the duration of such blocking, it is again desirable that the re-
source holding times be minimized.

Contributions in this paper In this paper, we study real-time systems that can be
modelled as collections of sporadic tasks (Mok 1983; Baruah et al. 1990), and are
implemented upon a platform comprised of a single preemptive processor, and addi-
tional resources. We assume that the shared resources are accessed within (possibly
nested) critical sections which are guarded by semaphores. For such systems

1. We formally study the concept of resource holding times (RHT’s), that quantify
the largest amount of time for which a task system may keep a resource locked.

2. We present an algorithm for computing such resource holding times from task
system specifications.

3. We present an algorithm for minimizing such resource holding times, when the
task system is scheduled using the (preemptive) Earliest Deadline First scheduling
algorithm (EDF) (Dertouzos 1974; Liu and Layland 1973), and access to shared
resources is arbitrated by the Stack Resource Policy (SRP) (Baker 1991).
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4. We derive a resource access policy that generalizes SRP, and prove that RHT’s are
further reduced if this resource access policy is used in preference to SRP.

Organization The remainder of this paper is organized as follows. In Sect. 2, we
present the formal model for resource-sharing sporadic task systems that is used in
the remainder of this paper, summarize prior results on feasibility analysis of such
resource-sharing sporadic task systems (Sect. 2.2), and present an example to illus-
trate how the algorithms we will derive in this paper may be used to reduce resource
hold times (Sect. 2.1). In Sect. 3, we derive an algorithm for computing such re-
source holding times. In Sect. 4, we present, and prove properties of, an algorithm
for modifying a given resource-sharing sporadic task system in such a manner that
its semantics do not change but its RHT’s tend to decrease. In Sect. 5, we derive a
resource sharing protocol that generalizes the Stack Resource Policy (SRP), and that
permits further reductions in RHT’s. We conclude in Sect. 6 with a summary of the
results presented in this paper.

2 System model and illustrative example

A real-time task system, denoted by τ , is comprised of n sporadic tasks (Mok 1983;
Baruah et al. 1990), denoted τ1, τ2, . . . , τn. Each sporadic task τi (1 ≤ i ≤ n) is char-
acterized by a worst-case execution time parameter (WCET) Ci ; a relative deadline
parameter Di ; a period/ minimum inter-arrival separation parameter Ti ; and its re-
source requirements (discussed below). Each such task generates an infinite sequence
of jobs, each with execution requirement at most Ci and a deadline Di time units after
its arrival, with the first job arriving at any time and subsequent successive arrivals
separated by at least Ti time units. The above parameters are assumed to be in the
domain of positive real numbers.

The system is assumed to execute upon a platform comprised of a single preemp-
tive processor, and m other shared resources R1,R2, . . . ,Rm. The resource require-
ments of the sporadic tasks may be specified in many ways (e.g., see papers Baker
1991; Lipari and Buttazzo 2000; Pellizzoni and Lipari 2005); for our purposes, we
will let

(i) Sij denote the length (in terms of WCET) of the largest critical section in τi that
holds resource Rj ;

(ii) Smax
j denote the length of the largest critical section holding resource Rj among

all tasks in τ :

Smax
j = n

max
i=1

{Sij };
(iii) Cih denote the length (in terms of WCET) of the largest critical section in τi that

holds some resource that is also needed by τh (i �= h):

Cih = max{Sij | Rj is accessed by τh}.
Some assumptions: in the remainder of this paper, we assume that the sporadic tasks
are indexed in non-decreasing order of their relative deadline parameters: Di ≤ Di+1
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Let τ1, τ2, . . . , τn denote the tasks, and R1,R2, . . . ,Rm denote the additional shared
resources. Tasks are assumed to be indexed according to non-decreasing relative dead-
lines: Di ≤ Di+1 for all i.

1. Each resource Rj is statically assigned a ceiling �(Rj ), which is set equal to
the index of the lowest-indexed task that may access it:

�(Rj ) = min{i | τi accesses Rj }.

2. A system ceiling is computed each time a resource is locked/unlocked. This is
set equal to the minimum ceiling of any resource that is currently being held by
some job.

3. At any instant in time, a job generated by τi may begin execution only if it is
the earliest-deadline active job, and i is strictly less than the system ceiling. (It
is shown Baker 1991 that a job that begins execution will not subsequently be
blocked.)

Fig. 1 EDF + SRP

(∀i). Second, we assume that WCET parameters are normalized with respect to the
speed of the dedicated processor; i.e., each job of τi needs to execute for at most Ci

time units upon the available dedicated processor. Third, we will use the convention
that right half-open intervals [t, t ′) represent continuous execution of a task from time
t to time t ′. Finally, we assume that tasks do not self-suspend execution; i.e., tasks do
not transition to a “suspended” state prior to the completion of their job.

EDF + SRP In the remainder of this paper, reasonable familiarity with the Stack Re-
source Policy (SRP) (Baker 1991) is assumed. When it is used in conjunction with
EDF, the rules used by the SRP to determine execution rights are summarized in
Fig. 1—see Baker’s paper (Baker 1991) for proofs of correctness. We will limit our
attention to work-conserving scheduling algorithms: an algorithm is work-conserving
if it doesn’t idle the available processing unit when there is a ready task waiting to
be scheduled. In Baruah (2006) Baruah proves that EDF + SRP is an optimal work-
conserving policy for sporadic task-system, meaning that if a sporadic task set with
shared resources can be scheduled with a given work-conserving scheduling policy,
then it can also be scheduled with EDF + SRP.

2.1 Sharing global resources: an example

Most prior open environment designs that permit global resource sharing (e.g. Davis
and Burns 2006; Behnam et al. 2006) mandate that such global resources be accessed
non-preemptively by each individual application. The intuition behind this approach
is sound: by holding global resources for the least possible amount of time, each
application minimizes the blocking interference to which it subjects the other ap-
plications. However, the downside of such non-preemptive execution is felt within
each application’s task system—by requiring certain critical sections to execute non-
preemptively, it is more likely that a system will fail to meet its own (internal/ local)
deadlines. In fact, the strategy of non-preemptively executing all critical sections has
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been previously explored (e.g., see Mok’s Ph.D. thesis, Mok 1983). But it was soon
recognized that such a strategy creates additional—avoidable—priority inversions:
this recognition led to the development of the sophisticated resource-access arbitra-
tion protocols such as PCP (Sha et al. 1990) and SRP (Baker 1991).

More specifically, for each individual application that uses global resources, we
can distinguish between three different cases:

1. If an application is feasible on its designated fraction of the computing platform
when it executes its global resources non-preemptively, then it should indeed ex-
ecute its global resources non-preemptively, thereby minimizing the interference
to which it subjects other applications.

2. If an application is infeasible on its designated fraction of the computing platform
when scheduled using EDF + SRP (i.e., when global resources are preempted as
they would be under SRP), it follows from the optimality of EDF + SRP (Baruah
2006) that no (work-conserving) scheduling strategy can result in this application
being feasible upon its designated fraction of the computing platform.

3. The interesting case is when neither of the two above holds: the application is
infeasible on its designated fraction of the computing platform when accessing a
global resource non-preemptively, but feasible when access to the global resource
is preemptive.

The third case above is the one we address in this paper. More specifically, we seek
to devise a scheduling framework that schedules any feasible task system to meet
all deadlines and minimizes the resource holding times. Note that an application’s
“designated fraction of the computing platform” may be some value α between zero
and one; however, the results contained in this paper will assume that each task’s
execution has been normalized by α. Therefore, any application running on some
fractional portion on a unit-speed processor can logically be viewed as an application
executing on a dedicated processor of speed 1/α. Throughout the remainder of this
paper, we will restrict our attention to minimizing the resource-holding times of task
systems executing on their own dedicated processing platform.

We illustrate by an example below. The task system in this example is indeed
successfully scheduled by EDF + SRP to meet all deadlines—this may be validated
using the feasibility test in Baruah (2006). However, EDF + SRP makes no attempt
to minimize resource holding times (since doing so was not a design goal of SRP).
We demonstrate two approaches for reducing the resource holding times; when used
together, these two approaches can cause significant reduction in resource holding
times.

Example 1 Consider the application comprised of the following four sporadic tasks
given in Fig. 2, executing upon a processor of unit computing capacity. There is one
shared resource R1, which is accessed by both τ3 and τ4 within critical sections for
the entire duration of their executions.

Non-preemptive execution of the critical section could result in a deadline miss: if
τ1 generates a job at the instant that τ4’s job enters its critical section, then τ1’s job
would be blocked until its deadline.
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Fig. 2 Task parameters for
sporadic task system used in
Example 1. Also, the WCET of
each task’s critical section for
R1 is given

Ci Di Ti Si1

τ1 1 4 4 0
τ2 2 8 8 0
τ3 2 10 10 2
τ4 4 16 16 4

Now let us consider the situation if the local scheduling algorithm used is
EDF + SRP (the interested reader may refer to Baruah 2006 for details of the fea-
sibility test). Under SRP, the ceiling of R1 is 3 (�(R1) ← 3); i.e., τ4’s execution
of the shared resource may be preempted by τ1 and by τ2 but not by τ3. It may be
verified, using the test in Baruah (2006), that the system is feasible.

(a) What is the resource holding time? In Sect. 3 below, we present an algorithm
for computing such resource holding times; for now, we present an informal argument
as to how this may be done. The test of Baruah (2006) reveals that the worst-case
blocking scenario occurs when τ1, τ2, and τ3 all begin releasing jobs as frequently
as possible immediately after τ4 has entered its critical section. Assume that τ4 locks
the CS at time-instant zero and that τ1 and τ2 generate jobs immediately after the
resource lock by τ4; that is, τ4 executes a lock of the resource in the interval [0, ε),
where ε > 0, and both τ1 and τ2 generate jobs at time ε. As ε approaches zero, the
resulting EDF + SRP schedule, until the release of the resource R1, looks as follows:

with the critical section executing over [3 + ε,4 + ε) and [5 + ε,8) and released at
time-instant 8; hence, the resource hold time is equal to 8. (Note, we assume that the
resource locking time locking time of ε is included in the worst-case execution time,
S4,1.)

(b) However, observe that it is in fact not necessary to execute τ2 over [1 + ε,

3+ε); instead, τ2’s job could have been blocked by the critical section and would still
have completed by its deadline. The RHT-minimization strategy presented in Sect. 4
is based on exploiting this fact, by recognizing that the ceiling of R1 could actually
be set to 2 (rather than 3) without compromising feasibility. With �(R1) ← 2, the
schedule over the same time interval as above looks like this:

with the critical section executing over [1 + ε,4 + ε) and [5 + ε,6) and released at
time-instant 6; hence, the resource hold time is equal to 6.

(c) Depending upon how much one is willing to modify the local resource-access
algorithm from “standard” SRP, further reduction in resource holding times may be



Real-Time Syst

possible. Such an approach is explored in Sect. 5. With respect to our example above,
we notice that while τ1’s jobs cannot be blocked by the entire CS (which has a WCET
of 4 time units), each job of τ1 can however tolerate 3 units of blocking. This fact can
be incorporated into the local algorithm which would then recognize that the job of
τ1 arriving at time-instant 4 in the “worst-case” scenario described above needn’t
preempt the critical section of τ4, yielding the following schedule over the same time
interval as above:

with the critical section executing over [1 + ε,5); hence, the resource hold time is
now reduced to 5.

2.2 Feasibility analysis under EDF + SRP scheduling

We now review some definitions and results concerning the feasibility analysis of
systems that are scheduled using EDF + SRP.

For any sporadic task τi and any non-negative number t , the demand bound func-
tion DBF(τi, t) denotes the maximum cumulative execution requirement that could
be generated by jobs of τi that have both their arrival-times and deadlines within a
contiguous time-interval of length t . It has been shown (Baruah et al. 1990) for a
sporadic task τi that

DBF(τi, t) = max

(
0,

(⌊
t − Di

Ti

⌋
+ 1

)
Ci

)
.

For task system τ and any non-negative t , we let DBF(τ, t) denote the following sum
DBF(τ, t) = ∑

τi∈τ DBF(τi, t).
A priority inversion is said to occur during run-time if the earliest-deadline job that

is active—awaiting execution—at that time cannot execute because some resource
needed for its execution is held by some other job. These (later-deadline) jobs are
said to be the blocking jobs, and they block the earliest-deadline job. The earliest-
deadline job is said to be blocked during the time that it is pending but does not
execute, while later-deadline jobs execute.

Definition 1 (From Baruah 2006) For any L ≥ 0, the blocking function B(L) denotes
the largest amount of time for which a job of some task with relative-deadline ≤ L

may be blocked by a job of some task with relative deadline > L.

Recall that Cjh denotes the length of the largest critical section in τj that holds
some resource that is also needed by τh. Given these Cjh’s, we can easily compute
the blocking function B(L) as follows:

B(L) = max{Cjh | Dj > L and Dh ≤ L}. (1)
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It has been shown (Baruah 2006) that ensuring

B(L) ≤ L − DBF(τ,L) (2)

for all values of L ≥ 0 is necessary and sufficient for ensuring feasibility—intuitively
(see Baruah’s paper, Baruah 2006, for a formal proof), for each L the right hand
side (RHS) denotes the “slack” left over after the maximum cumulative demand of
all the tasks over an interval of length L, while the left hand side (LHS) denotes the
maximum possible overhead due to blocking.

From the definition of the blocking function above (1), we note that B(L) = 0 for
all L ≥ Dn—since there are no jobs with relative deadline > Dn, the index j in (1)
will never be instantiated for L ≥ Dn. Hence for all L ≥ Dn, checking condition (2)
reduces to checking that DBF(τ,L) is at most L. The blocking term plays no role in
determining the truth or falsity of this.

Observe that since both B(L) and DBF(τ,L) may increase only for values of L

satisfying L ≡ (k ·Ti +Di) for some i, 1 ≤ i ≤ n, and some integer k ≥ 0, the system
is feasible if condition (2) holds at all such values of L. Let d1, d2, d3, . . . denote all
such L, indexed according to increasing value (i.e., with dk < dk+1 for all k).

An upper bound has been determined (Baruah et al. 1990) such that, if condi-
tion (2) is not violated for some dk smaller than this upper bound, then condition (2)
will not be violated for any dk at all. This bound is equal to the smaller of (i) the least
common multiple (lcm) of T1, T2, . . . , Tn, and (ii) the following expression

max

(
Dn,

1

1 − U

n∑
i=1

Ui · max(0, Ti − Di)

)

where Ui denotes the utilization (the ratio Ci/Ti ) of τi ; and U denotes the system uti-

lization: U
def= U1 +U2 +· · ·+Un. (Recall that we assume tasks are indexed according

to non-decreasing order of their relative deadline parameters; hence, Dn equals the
largest value of the relative deadline parameter of any task in the task system.) This
bound may in general be exponential in the parameters of τ ; however, it is pseudo-
polynomial if the system utilization is a priori bounded from above by a constant less
than one.

A definition: we will use the term testing set of τ to refer to the set of dk’s that
are no larger than this upper bound. We will denote this testing set by the notation
T S(τ ).

We now derive an implementation of an algorithm for validating, for a given task
system τ , whether (2) holds for all L ∈ T S(τ ). For this, we need the following
lemma.

Lemma 1 For all L such that Di ≤ L < Di+1, B(L) = B(Di).

Proof Consider any L such that Di ≤ L < Di+1. Since no relative-deadline pa-
rameter lies between Di and L, any pair of relative deadlines (Dj ,Dh) such that
((Dj > L) and (Dh ≤ L)) also satisfies ((Dj > Di) and (Dh ≤ Di)). Hence by (1),
B(L) is identically equal to B(Di). �
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ENHANCED PROC. DEMAND TEST(τ )

1 i ← 0
2 for each dk in T S(τ ), considered in increasing order, do

� Check feasibility, and compute the βi parameters
3 while (dk = Di+1) do � if multiple tasks have the same relative

deadline parameter
4 i ← i + 1
5 βi ← ∞
6 end while
7 if DBF(τ, dk) > dk then return “infeasible” end if � ignoring

blocking (which is considered below)
8 βi ← min(βi, dk − DBF(τ, dk))

9 end for
� Now check the effects of blocking

10 for each i ← 1 to (n − 1) do � Does (4) hold?
11 if (B(Di) > βi) then return “infeasible” end if
12 end for
13 return “feasible”

Fig. 3 Enhanced Processor Demand Test, which (i) determines whether the input sporadic task system is
feasible under EDF + SRP scheduling, and (ii) if feasible, computes the blocking allowances (the βi ’s)

Definition 2 For each i, 1 ≤ i < n, define the blocking tolerance βi as follows:

βi
def= min

Di≤L<Di+1}
(L − DBF(τ,L)), (3)

Observe that in (3) above, βi takes its value at some value of L ∈ T S(τ ) that lies
in the interval [Di,Di+1). Hence if τ is infeasible because (2) is violated at some
dk < Dn, it must be the case that

∃i : 1 ≤ i < n : B(Di) > βi. (4)

An EDF + SRP feasibility test is presented in pseudo-code form as Procedure EN-
HANCED PROC. DEMAND TEST in Fig. 3. The first for-loop (lines 2–9) (i) ignores
blocking effects and checks (line 7) whether cumulative processor demand over any
interval exceeds the interval length; and (ii) computes the βi parameters. The second
for-loop (lines 10–12) checks condition (4) for each i.

3 Computing the resource hold times

In this section,2 we describe how resource hold times may be computed for each
resource in a given feasible resource-sharing sporadic task system. That is, we assume

2Please note the results contained in this subsection contain improvements on earlier results reported
in Fisher et al. (2007c). We are grateful to the journal reviewer who suggested a way to “tighten” the
computed value of RHT(Rj , τi ).
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that the input task system has been deemed feasible (e.g., by the feasibility-testing
algorithm described in Sect. 2.2), and describe how we may compute RHT’s for this
system.

For any resource Rj and any task τi , let RHT(Rj , τi) denote the maximum length
of time for which τi may keep resource Rj locked. Let RHT(Rj ) denote the system-
wide resource holding time of Rj : RHT(Rj ) = maxn

i=1{RHT(Rj , τi)}. Our objective
is to compute RHT(Rj ) for each Rj .

Computing RHT(Rj , τi) We first describe how we would compute RHT(Rj , τi) for
a given resource Rj and a given τi which uses Rj .

1. The first step is to identify the longest (in terms of WCET) critical section of τi

accessing Rj . Recall that Sij denotes the length of this longest critical section.
2. It follows from the definition of the EDF + SRP protocol that no task with index

≥ �(Rj ) may execute while Rj is locked. Hence the only jobs that may execute
while τi holds the lock on Rj are those generated by tasks τ1, . . . , τ�(Rj )−1 that
have their deadline ≤ the deadline of the job of τi that holds the lock.

3. We now consider the maximum number of times any task τ� ∈ {τ1, . . . , τ�(Rj )−1}
could preempt τi while τi is holding resource Rj . Let Jik be a job of task τi that
arrives at time aik . If Jik acquires Rj at time tij (≥ aik), then at time tij there
are no active jobs with deadlines prior to or at aik + Di of tasks τ1, . . . , τ�(Rj )−1

(otherwise, τi could not execute at time tij ). Thus, only jobs of τ1, . . . , τ�(Rj )−1

with arrival times and deadlines within the interval (tij , aik + Di] may delay the
execution of τi while it holds resource Rj . For a sporadic task τ�, the maximum
number of jobs of τ� that have both arrival times and deadline in the half-open in-
terval of length t is max(0, � t−D�

T�
). Since the earliest time at which job Jik could

acquire resource Rj is aik and since Di ≥ D�, an upper bound on the number of
times task τ� can preempt τj while τj is holding resource Rj is:

⌈
Di − D�

T�

⌉
. (5)

The above upper bound is dependent on the relative deadline of task τi . We can
obtain a different upper bound on the maximum number of preempting jobs of τ�

that is instead dependent upon the time that has elapsed since τi acquired resource
Rj at time tij . Let t be the amount of elapsed time since tij . The maximum number
of jobs of τ� that could have arrived and preempted job Jik in the interval (tij ,

tij + t) is: ⌈
t

T�

⌉
. (6)

Combining (5) and (6), we may obtain an overall upper bound on the number of
preemptions by task τ�: ⌈

min(t,Di − D�)

T�

⌉
. (7)
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4. We now quantify the maximum execution requests of jobs of tasks τ1, . . . , τ�(Rj )−1
that have deadlines prior to the deadline of job Jik . Assume that t time units have
elapsed since job Jik has acquired Rj at time tij . Then, by (7), the maximum exe-
cution requests by jobs of τ� (where τ� ∈ {τ1, . . . , τ�(Rj )−1}) that can preempt Jik

is given by the following function RBF which stands for “request-bound function:”

RBF(τ�, τi, t)
def=

⌈
min(t,Di − D�)

T�

⌉
· C�. (8)

The cumulative execution requests of jobs of tasks {τ1, . . . , τ�(Rj )−1} that can
preempt τi while it is holding resource Rj for t units of time, along with maximum
amount τi can execute on resource Rj is given by:

Wi(t)
def= Sij +

�(Rj )−1∑
�=1

RBF(τ�, τi, t). (9)

5. Let t∗i be the smallest fixed point of function Wi(t) (i.e. Wi(t
∗
i ) = t∗i ). Using

techniques from Joseph and Pandya (1986); Lehoczky et al. (1989), we can
obtain t∗i in time complexity that is pseudo-polynomial in the parameters of
{τ1, . . . , τ�(Rj )−1} ∪ {τi}. Note that a fixed-point must exist since Wi(t) is left-

continuous, non-decreasing, and for all time t ′ > tlast
def= max�∈{1,...,�(Rj )−1}(Di −

D�), Wi(t
′) equals Wi(tlast); that is, eventually Wi(t) ceases to increase and the

left-continuous, non-decreasing property ensures that if Wi(t) < t then there must
exist a t ′ < t where Wi(t

′) = t ′. Furthermore, the range of Wi(t) is finite; thus, the
iterative techniques from Joseph and Pandya (1986); Lehoczky et al. (1989) are
guaranteed to terminate. By the next theorem, t∗i is the maximum amount of time
τi can hold resource Rj . Thus,

RHT(Rj , τi)
def= t∗i . (10)

Theorem 1 The maximum resource-holding time, RHT(Rj , τi), of resource Rj by
task τi under EDF + SRP is equal to the smallest fixed point of Wi(t) (i.e., t∗i ).

Proof To show that t∗i is equal to the RHT(Rj , τi), we must prove two statements:

1. if τi locks resource Rj at time tij , τi will complete execution of its critical section
for Rj by time tij + t∗i ;

2. there exists some legal sequence of job arrivals for τ that cause τi to complete the
execution of its critical section at exactly time tij + t∗i .

In order to prove Statement 1, we will show that τi will complete its critical section
execution of resource Rj by time tij + t∗i under the “worst-case” arrival sequence. Re-
call from the definition of EDF+SRP that no task with index ≥ �(Rj ) can preempt
job Jik while it locks Rj . Therefore only tasks τ1, . . . , τ�(Rj )−1 can execute from
time tij when Jik acquires Rj until τi releases the lock. There is a direct analogy
for computing RHT(Rj , τi) to calculating the worst-case response time of a job in a
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fixed-priority system. τ1, . . . , τ�(Rj )−1 are all the tasks that generate jobs of (poten-
tially) higher priority than task τi while it is executing a critical section for Rj . The
critical instant theorem (Liu and Layland 1973) states that in a fixed-priority system
the worst-case response time of a job of a given task τi occurs when it is released
simultaneously with jobs of all tasks with higher-priority than τi and each higher-
priority task releases subsequent jobs as soon as legally possible. Let tij + ε (where
ε > 0) be the earliest time after tij that a job of any task of {τ1, . . . , τ�(Rj )−1} could
arrive. By identical argument to the critical instant theorem, the maximum resource-
hold time for job Jik and resource Rj occurs when tasks that may preempt Jik (i.e.
tasks τ1, . . . , τ�(Rj )−1) simultaneously release jobs ε time after Jik has acquired Rj ,
and subsequent jobs are released as soon as legally possible; hereafter, we will refer
to this arrival sequence as the “critical-instant arrival sequence.” Observe if the re-
lease time of one of these higher-priority jobs J� occurs later than tij + ε, the amount
of pre-emption of Jik by τ� while Jik is holding Rj could never increase. Similarly,
moving a job earlier is not possible: by the third step in computing RHT(Rj , τi) above,
there are no active jobs for tasks τ1, . . . , τ�(Rj )−1 at time tij . Moving the activation
of the first job of a task of τ1, . . . , τ�(Rj )−1 forward in time would either contradict
this property (if the job is still active at time tij ), or would result in a lower interfer-
ence (if the job completed its execution at time tij ). Moving subsequent jobs of tasks
τ1, . . . , τ�(Rj )−1 earlier in time would instead produce an illegal sequence. Mov-
ing subsequent jobs later would force later jobs of τ1, . . . , τ�(Rj )−1 to have deadline
greater than Jik’s deadline and decrease the amount that such a task executes while
τi is in its critical section. Thus, the worst-case response time for the execution of
τi ’s critical section on Rj occurs when all tasks τ1, . . . , τ�(Rj )−1 release jobs si-
multaneously at ε at tij + ε, with ε approaching zero, and all subsequent jobs of
τ1, . . . , τ�(Rj )−1 arrive as quickly as possible. By the logic of Steps 3 and 4 of com-
puting RHT(Rj , τi), the worst-case execution requirements of Jik and jobs of any task
τj ∈ {τ1, . . . , τ�(Rj )−1} that may preempt Jik while accessing Rj over an interval of
length t are exactly expressed by Wi(t).

By definition, t∗i is the smallest fixed point of Wi(t), i.e., Wi(t
∗
i ) = t∗i . For

the devised release sequence, RBF(τ�, τi, t
∗
i ) is an upper bound for task τ� ∈

{τ1, . . . , τ�(Rj )−1} on the maximum execution requirements of jobs of τ� that may
preempt Jik released in the interval (tij , tij + t∗i ). Thus Wi(t

∗
i ) is an upper bound

on the execution requirement of Sij and all jobs of τ1, . . . , τ�(Rj )−1 that arrive in
the interval (tij , tij + t∗i ) and could preempt Jik . Jik will relinquish the resource
Rj at the first time the processor has completed the execution of the critical sec-
tion of length Sij and the requests of all higher priority jobs. Since Wi(t

∗
i ) = t∗i

and Wi(t
∗
i ) represents the worst-case execution requirement of “higher-priority” jobs

of τ1, . . . , τ�(Rj )−1 that could arrive in [tij + ε, tij + t∗i ) plus the worst-case ex-
ecution time for a critical section of τi on resource Rj , the processor must have
completed execution of the critical section of length Sij (and all preempting jobs of
τ1, . . . , τ�(Rj )−1) by time tij + t∗i .

To see that Statement 2 also holds, observe that for the worst-case arrival sequence
Wi(t) is an exact quantification (as ε tends to zero) on the execution requirements of
jobs of τ1, . . . , τ�(Rj )−1 and Jik over the interval [tij + ε, tij + t∗i ). Therefore, t∗i is
equal to RHT(τi, t). �
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4 Minimizing RHT’s within the SRP

We now address the issue of decreasing these RHT’s, without making any changes to
the scheduling framework (EDF + SRP) used. More specifically, we attempt to modify
a given resource-sharing sporadic task system such that its semantics do not change,
but the resource holding times in the resulting system are smaller (or in any event,
no larger) than in the original. Furthermore, the modified system is scheduled by
the exact same scheduling protocol—EDF + SRP—as the original system; i.e., we are
proposing no changes to the application semantics, nor to the scheduling algorithm
deployed.

In general, there is an easily-identified tradeoff between system feasibility and
resource-holding time minimization.

• At one extreme, one could execute each critical section non-preemptively (as
proposed by Mok 1983) to obtain the minimum possible resource holding time
maxi{Sij } for each Rj . However, such non-preemptive execution of critical sec-
tions means that any job may be blocked by any other job, forcing deadline misses
that may have been avoided by other resource-sharing policies—indeed, avoid-
ing such unnecessary blocking was the primary motivation for the development of
resource-sharing policies such as SRP.

• At the other extreme lie SRP and similar policies. SRP is known to be optimal
in the sense that if a task system cannot be scheduled by EDF + SRP to meet all
deadlines, then it would miss deadlines under any other work-conserving policy
as well (Baruah 2006, Lemma 1). However, such policies were not designed to
minimize the duration of time for which a resource is locked; as we will see, they
may end up keeping resources locked for a greater duration than is needed to ensure
feasibility.

Recall that we desire to continue to use the EDF + SRP scheduling framework, while
reducing resource holding times if possible. We achieve this by modifying the para-
meters of a given resource-sharing sporadic task system such that its semantics do not
change, but the resource holding times in the resulting system are smaller (or in any
event, no larger) than in the original. The details of such modification are presented
below.

4.1 Reducing RHT for a single resource

In this section, we derive an algorithm for modifying a given resource-sharing spo-
radic task system such that the resource holding time RHT(Rj ) is reduced, for a single
resource Rj . In Sect. 4.2, we extend this algorithm to reduce RHT’s for all the shared
resources in the system. We will first informally motivate and explain the intuition
behind our algorithm; a more formal treatment follows.

Suppose that task τi uses resource Rj . By definition of the SRP, τi ’s execu-
tion on Rj may only be interrupted by jobs of tasks with index strictly less than
�(Rj ). Hence the smaller this preemption ceiling �(Rj ), the smaller the value of
RHT(Rj , τi); in the extreme, �(Rj ) = 1 and RHT(Rj , τi) = Sij (i.e., the critical sec-
tion executes without preemption). Hence, our RHT minimization strategy aims to
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REDUCECEILING(Rj)

� Suppose that �(Rj ) ≡ (i + 1); can we reduce it to i?
1 if (Smax

j > βi) then return “false” end if � Cannot reduce �(Rj )

� Decrease Rj ’s preemption ceiling to i

2 Add a zero-WCET critical section in τi , accessing Rj

3 return “true” � Have reduced �(Rj ) by 1

MINCEILING(Rj )

� Reduce Rj ’s preemption ceiling as much as possible
1 while (�(Rj ) > 1) do
2 if (REDUCECEILING(Rj) == “false”) break done
3 return

Fig. 4 Reducing the preemption ceilings for Rj

make the ceiling �(Rj ) of each resource Rj as small as possible without rendering
the system infeasible. Let us consider a particular resource Rj with �(Rj ) > 1 to
illustrate our strategy (if �(Rj ) = 1, then Rj ’s preemption ceiling cannot be reduced
any further).

We add a “dummy” critical section—one of zero WCET—that accesses Rj to the
task τ�(Rj )−1, and check the resulting system for feasibility. If the resulting sys-
tem is infeasible, then we remove the critical section: we are unable to reduce
RHT(Rj , τi).
Observe that adding such a critical section effectively decreases the preemption
ceiling of Rj by one. Hence, it may be hoped that RHT(Rj , τi) in the resulting
system is smaller than in the original system; in any event, it is no larger than in
the original system.
Observe also that adding such a critical section with zero WCET is a purely syntac-
tic change. A “reasonable” implementation of the task system (which we assume
here) would not have the task execute its lock for such a null-sized critical section;
hence, this change has no semantic effect on the task system. Consequently, the
modified task system is semantically identical to the original.

By repeatedly applying the above strategy until it cannot be applied any further, we
will have reduced each resource’s preemption ceiling to the smallest possible value,
thereby reducing the RHT’s as much as possible using this strategy.

Having provided an informal description above, we now proceed in a more for-
mal fashion by providing the necessary technical details. The pseudo-code for reduc-
ing Rj ’s preemption ceiling by one is given in Fig. 4, as Procedure REDUCECEIL-
ING(Rj ). Procedure REDUCECEILING(Rj) returns “false” if reducing �(Rj ) by one
would render the system infeasible; if reducing �(Rj ) by one retains feasibility, then
Procedure REDUCECEILING(Rj) modifies the task system accordingly (by adding a
zero-WCET critical section using Rj to τi ) and returns “true”.

We now explain why Procedure REDUCECEILING is correct. Let us suppose that
�(Rj ) is currently (i + 1), and we wish to explore whether we can reduce it to i

without rendering the system infeasible.
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Observe (from Definition 1 which defines the blocking function) that reducing
�(Rj ) to i from its current value of (i + 1) will have no effect on B(L) for L < Di ,
since no critical section of τi, τi+1, . . . , τn that could not already block jobs with
deadline < Di in the critical-instant arrival sequence is now able to do so. Similarly,
this change will have no effect on B(L) for L ≥ Di+1, since the preemption ceiling
of Rj was already (i + 1) and hence critical sections holding Rj were already able to
block (directly or indirectly) jobs with deadline ≥ Di+1 in the critical-instant arrival
sequence.

In fact, B(L) may change only for L within the range [Di,Di+1). And for all such
L, Lemma 1 tells us that B(L) = B(Di). It therefore remains to determine the value
that B(Di) would assume if we made the change and reduced Rj ’s ceiling to i. In
fact B(Di) must be modified as shown below:

B(Di) ← max
(
B(Di),

n
max
�=i+1

{S�j }
)
. (11)

This is obtained based upon the following reasoning. Since we have added a
“dummy” (zero-WCET) critical section using Rj to task τi , the value of C�i may
change for all � > i (recall that C�i denotes the length (in terms of WCET) of the
largest critical section in τ� that holds some resource also needed by τi ). Specifically,
it is possible that the largest critical section using Rj in tasks τi+1, τi+2, . . . , τn (i.e.,
maxn

�=i+1{S�j }) is larger than the current value of B(Di). In that case, the value of
B(Di) must be updated, as shown above in (11).

Hence to determine whether Rj ’s preemption ceiling can indeed be reduced from
(i + 1) to i, we must re-evaluate condition (4) for i to determine whether it remains
false when B(Di) is updated according to (11) above. Anyway, since it is assumed
that the task system is feasible when Rj ’s preemption ceiling �(Rj ) = (i + 1), we
can simplify this re-evaluation of condition (4) for i, based on the following rea-
soning. If the new value of B(Di), as computed in (11), were equal to the original
value (i.e., the outer “max” in (11) returns the first term), then the value of condi-
tion (4) cannot have changed. Hence the re-evaluation only needs to be done if the
outer “max” equals the second term: maxn

�=i+1{S�j }. Alternatively, we could simply
check condition (4) with B(Di) set equal to maxn

�=i+1{S�j }, since the evaluation is
guaranteed to return true if this term is not the max.

Moreover, since we deemed the system initially feasible, we need to consider
only i indexes below the original resource ceiling (the one without any artificial
critical section). Giving all dummy critical sections a null WCET, it follows that
maxn

�=i+1{S�j } equals Smax
j . Therefore, we can use this last term every time we need

to verify if the ceiling of resource Rj could be decreased by one. This is the strat-
egy adopted in Procedure REDUCECEILING(Rj). The conditional in Line 1 is the
re-evaluation of condition (2) if �(Rj ) were to take on the value i. If condition (4)
now holds for i, then this reduction in �(Rj ) will cause the system to become in-
feasible; hence Procedure REDUCECEILING(Rj) returns “false” without making the
change.

On the other hand, if condition (4) continues to not hold, then �(Rj ) may safely
be decreased by one. This is done in line 2 of Procedure REDUCECEILING(Rj), by
the artefact of adding a zero-WCET critical section accessing resource Rj to task τi .
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By calling REDUCECEILING(Rj) repeatedly until it returns false or �(Rj ) ≡ 1,
we can ensure that resource Rj ’s ceiling is reduced to the smallest possible value;
this is represented in pseudo-code form as Procedure MINCEILING(Rj ) in Fig. 4.

4.2 Reducing RHT’s for all resources

In this section, we describe how the algorithms of Sect. 4.1 may be used to decrease
the resource hold times for all the resources in a resource-sharing sporadic task sys-
tem.

Of course, the obvious way of doing this is to make individual calls to Procedure
MINCEILING separately for each resource in the system. However, it is not clear what
effect the order in which these calls are made has on the final preemption ceilings ob-
tained for all the resources. For example, given a system with two resources R1 and
R2, is the “better” strategy the one that calls MINCEILING(R1) first and then MIN-
CEILING(R2), or the one that calls MINCEILING(R2) first followed by MINCEIL-
ING(R1)? (Or perhaps an even better strategy is to interleave calls to REDUCECEIL-
ING(R1) and REDUCECEILING(R2) in some specific sequence?) If the order in which
calls are made to Procedure MINCEILING and Procedure REDUCECEILING make a
difference to the amount by which the individual ceilings decrease, then we would
need to study application semantics to decide what a “best” combination of RHT’s
would be, from the application’s perspective, and then solve the question of deciding
how to go about achieving an outcome close to this best combination.

Fortunately, it turns out that the order in which calls are made to Procedure RE-
DUCECEILING (and hence, to Procedure MINCEILING) has no effect on the final
preemption ceilings that are obtained; this is formalized in the following lemma.

Lemma 2 For any pair of resources Rj and Rp (p �= j), the truth value re-
turned by REDUCECEILING(Rj ) is not influenced by the number of times that
REDUCECEILING(Rp) has already been called.

Proof Suppose that procedure REDUCECEILING(Rp) has indeed been called one or
more times prior to calling REDUCECEILING(Rj ). Let the current value of �(Rj ) be
(i + 1).

Recall that we assume the system to initially be feasible, and observe that no call
to REDUCECEILING changes this: a preemption ceiling is changed only if doing so
does not render the system infeasible. Hence regardless of how many calls were made
to REDUCECEILING(Rp), we are guaranteed that the sporadic task system is feasible
prior to the call to REDUCECEILING(Rj).

Observe from the pseudo-code (Fig. 4) that the success or failure of the call to
REDUCECEILING(Rj ) is determined by the value of Smax

j : the call fails if this exceeds
βi , and succeeds otherwise. Since the values of Smax

j and βi are independent of prior
calls to REDUCECEILING, it follows that the success or failure of this call is not
dependent on whether REDUCECEILING(Rp) has been called previously or not. �

As a consequence of Lemma 2, it follows that the order in which we choose to
make calls to Procedure REDUCECEILING (and hence, to Procedure MINCEILING)
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REDUCEALL(τ )

� There are m resources, labelled R1, . . . ,Rm

1 for j ← 1 to m MINCEILING(Rj )

Fig. 5 Reducing Preemption ceilings for all resources

has no influence upon the final values returned by calls to Procedure MINCEILING.
We may therefore consider the resources in any order, and minimize the preemption
ceiling of each before moving on to the next. This is formalized in the pseudo-code
in Fig. 5, which considers the resources in the order in which they are indexed.

Using the modified ceilings given by Procedure REDUCEALL we obtain a schedul-
ing policy that is superior to both the non-preemptive execution of critical sections
and normal EDF + SRP. If a resource can be executed non-preemptively, then our al-
gorithm will reduce the resource ceiling to the lowest level, effectively executing the
critical section non-preemptively. If instead a non-preemptive execution of the criti-
cal section would cause other tasks of the same application to miss their deadlines,
our algorithm would allow some degree of preemption from higher priority tasks
of the same application: the ceiling is reduced to the lowest possible level that re-
tains the schedulability of the application. If this level equals the original SRP level,
then our algorithm will behave in the same way as EDF + SRP, inheriting its optimal-
ity (Baruah 2006). If an application cannot be scheduled with our algorithm, then no
other policy would find a feasible schedule.

4.3 Computational complexity

As can be seen from the pseudo-code in Fig. 4, condition (2) must potentially be re-
evaluated for every element in the testing set T S(τ ) between D�(Rj ) and D�(Rj )−1.
For a resource Rj that had a ceiling initially equal to n which Procedure MINCEIL-
ING(Rj ) reduces to 1 (by making (n − 1) calls to REDUCECEILING(Rj)), condi-
tion (2) would need to be evaluated at each element of T S(τ ) that is smaller than Dn.
There are potentially pseudo-polynomially many such elements; hence, the computa-
tional complexity of reducing the preemption ceiling of a single resource is pseudo-
polynomial in the representation of the task system. The computational complexity of
Procedure REDUCEALL(τ ) (which reduces the preemption ceiling of all m resources
in τ ) is m times this, which remains in pseudo-polynomial time.

Since feasibility-analysis on the original system must be done anyway, we can de-
crease the computational complexity by requiring some additional “book-keeping”
operations during the initial pseudo-polynomial feasibility analysis. This is what is
done in Procedure ENHANCED PROC. DEMAND TEST(τ ), where all blocking toler-
ances βi are computed and stored to memory during feasibility-analysis of τ , without
increasing the computational complexity by more than a constant factor.

When all blocking tolerances are already available, the complexity of Proce-
dure REDUCECEILING(Rj) decreases, so that the overall complexity of Proce-
dure REDUCEALL(τ ) becomes polynomial in the number of tasks.
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4.4 Relation to prior work

The method we propose to reduce the resource ceilings presents some analogies
with the work proposed by Saksena and Wang (2000). Saksena and Wang’s pro-
posed method increases the priority of a task after it starts executing (when possible)
to avoid unnecessary preemptions. The priority is raised to the maximum level that
doesn’t compromise system schedulability. In other words, when a task is scheduled
for execution, its priority is raised to a preemption threshold, such that (i) all tasks
with priority lower than this threshold cannot preempt the executing task, and (ii) all
higher priority tasks below the threshold won’t miss any deadline due to the blocking
suffered for a delayed preemption. In this way, the preemption overhead decreases
and the schedulability is preserved.

Additional works by other researchers extend the preemption threshold approach
to dynamic priority scheduling. Gai et al. (2001) propose the stack resource policy
with preemption thresholds (SRPT), a method to uniformly deal with the blocking
due to tasks with higher preemption thresholds or to tasks accessing shared resources.
Ghattas and Dean (2007) propose a framework that applies to both static-priority and
dynamic-priority scheduling, optimizing the selection of preemption thresholds for
systems with limited memory and reduced stack size.

This paper differs from previous works on preemption thresholds in several ways.
First, we are considering shared resources to reduce the amount of time for which a
resource can be held by a task. Our target is to decrease the resource holding time
instead of limiting the number of preemptions or the memory usage. Second, our task
model is more general, in that it applies as well to systems with deadlines different
from periods, while previous works assumed deadlines equal to periods. Finally, the
complexity of our algorithm to minimize the resource holding times is lower than the
overall complexity of the algorithm proposed in Saksena and Wang (2000) to maxi-
mize the preemption thresholds. By exploiting information from initial schedulability
analysis, we can optimally reduce the ceilings of all resources in polynomial time, as
explained in the previous subsection.

5 Modifying the scheduling framework to reduce RHT

In Sect. 4 above, we restricted ourselves to remain within the EDF + SRP scheduling
framework: our objective was to minimize the resource holding times while remain-
ing within this framework. We now eliminate the restriction that we be required to
use the EDF + SRP scheduling framework, and explore whether further reductions in
RHT’s are possible.

5.1 Overview and example

We first provide a broad overview of our proposed approach. We will continue to use
EDF as the scheduling algorithm, and will use a resource-access arbitration protocol
that is based upon SRP. More specifically, as in SRP we define a system ceiling at
each instant in time during run-time; unlike in SRP, however, this is not simply the
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minimum of the ceilings of all locked resources. Instead, the system ceiling at any
point in time depends upon the remaining WCET’s of each of the critical sections
that are currently holding resources. If the remaining WCET of a currently-executing
critical section is small enough that continuing to execute it will not cause a higher-
priority (earlier deadline) job to miss its deadline, then we block the higher-priority
job (equivalently, the system ceiling is set to a smaller value than it would be under
“regular” SRP, in that it allows for the blocking of this higher-priority, lower indexed,
job), and continue executing the critical section. This allows the critical section to
complete, and release the shared resource, sooner than if it were to be preempted by
the higher-priority job. We illustrate with an example.

Example 2 Consider a system comprised of two sporadic tasks τ1 and τ2, with τ1 =
(x − y, x, x) and τ2 = (2y,∞,∞). Task τ1 does not use any resource other than the
processor; task τ2’s jobs use a global resource R1 throughout their execution.

The ceiling �(R1) of resource R1 is equal to 2. It may be verified that since
β1 = x − (x − y) = y while Smax

1 = 2y, Procedure MINCEILING(R1) of Sect. 4
returns 2; i.e., we cannot use the technique of Sect. 4 above to reduce this ceiling to
1. Consequently the “worst case” scenario from the perspective of maximizing the
resource holding time RHT(R1, τ2) is as illustrated in the following diagram:

That is, a job of τ1 arrives immediately after τ2 acquires a lock on R1, and subsequent
jobs of τ1 arrive as soon as legally permitted to do so. We can see from the diagram
that RHT(R1, τ2) is 2x.

Now if we recognized that at time-instant x the critical section of task τ2 has
only y units of execution remaining, and that this could be accommodated in τ1’s
“slack,” then it would not be necessary to preempt τ2. In other words, the system
ceiling could be dynamically changed from 2 to 1 at this point in time, yielding the
following schedule:

and a resource holding time RHT(R1, τ2) of x + y.
Thus if y < x the second strategy of dynamically adjusting the system ceiling

during run-time results in lower RHT’s while retaining feasibility; in the extreme case
when y � x, RHT(R1, τ2) is reduced by a factor of almost two. Generalizing the
previous example using tasks τ1 = (x − (k − 1)y, x, x) and τ2 = (ky,∞,∞), with
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x > (k − 1)y, we can see that there are cases in which the dynamic strategy can
reduce the resource holding time by an arbitrarily high factor k.

5.2 The modified resource access protocol

In Example 2 above, observe that τ1 needed to be able to preempt τ2’s critical section
as long as the remaining WCET of the critical section is greater than β1, task τ1’s
blocking tolerance as defined in Definition 2. Once the critical section has executed
enough that at most β1 units of its execution remains, however, this critical section
may block jobs of τ1 without endangering these jobs’ ability to meet their deadlines.
In other words, the ceiling of resource R1 can be changed from 2 to 1 once there is
β1 units of execution remaining in the critical section.

In our proposed resource access protocol, the ceiling of a resource is dynamic
rather than static. We denote this dynamic ceiling of resource Rj at the current in-
stant during run-time as �D(Rj ), and describe below how these dynamic ceilings
are determined during run-time. Our modified scheduling framework differs from the
EDF + SRP scheduling framework presented in Fig. 1 only in the determination of
system ceilings (Rule 2 in Fig. 1): at each instant during run-time, we set the system
ceiling to equal the minimum dynamic ceiling �D(Rj ) of any resource Rj that is
currently being held by some job.

To change the value of �D(Rj ) during run-time, we insert short “ceiling chang-
ing” commands (in the spirit of the schedule carrying code3 introduced by Henzinger
et al. 2003) at specific points into critical sections that lock resource Rj . These com-
mands, denoted CEILCHANGE(Rj , i) change the dynamic priority of Rj by assigning
it the value i:

CEILCHANGE(Rj , i) ≡ �D(Rj ) ← i.

The pseudocode in Fig. 6 describes where these ceiling changing commands are in-
serted in each critical section. Procedure INSERTCEILCHANGE(τ�,Rj ) is called for
each critical section of each task τ� that locks resource Rj . The explanation for this
pseudo-code is as follows:

• Since the task set is assumed schedulable with EDF + SRP, all jobs with deadline
later than D�(Rj ) in the critical-instant arrival sequence can already be blocked
(directly or indirectly) by tasks accessing Rj , for the whole duration of the critical
section. Therefore, at the start of each critical section accessing Rj , the dynamic
ceiling �D(Rj ) is set equal to �(Rj ), where �(Rj ) denotes the “conventional”
(as previously defined in this paper—see Fig. 1) ceiling of resource Rj .

• As proved in Sect. 2.2, all jobs with deadline in [D�(Rj )−1,D�(Rj )) in the critical-
instant arrival sequence can tolerate β�(Rj )−1 units of blocking. Remember from
previous point that later jobs of τ�(Rj )−1 can already be blocked by critical section
accessing Rj . We can then forbid τ�(Rj )−1 from preempting critical sections ac-
cessing Rj once we are β�(Rj )−1 time units from the end of the critical section. We

3As in Henzinger et al. (2003), we assume that such schedule carrying code is very short, and hence has
zero execution time.
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INSERTCEILCHANGE(τ�,Rj )

� A critical section (CS) in τ�, locking resource Rj . S�,j denotes the
WCET of this CS.

1 insert a CEILCHANGE(Rj ,�(Rj )) command at the start of the CS
2 X�(Rj ) ← S�j � X1,X2, . . . ,X�(Rj ) are temporary variables
3 for i ← �(Rj ) − 1 down to 1 do
4 Xi ← min(Xi+1, βi) � At this point, Xi contains the value

min(βi, βi+1, . . . , β�(Rj )−1, S�j )

5 insert a CEILCHANGE(i) command Xi execution units from insert
a CEILCHANGE(Rj , i) command Xi execution units from he end
of the CS

6 end for

Fig. 6 Ceiling change points

can exploit this fact by changing the dynamic ceiling �D(Rj ) of resource Rj to
(�(Rj ) − 1) once we are β�(Rj )−1 time units from the end of the critical section.

• Sequentially repeating the previous step for each task τi ∈ {τ�(Rj )−2, . . . , τ1}, we
find that every job of τi is able to tolerate at least Xi = min(βi, βi+1, . . . , β�(Rj )−1)

time-units of blocking. Therefore, it is possible to forbid τi from preempting crit-
ical sections accessing Rj once we are Xi time units from the end of the critical
section. This can be achieved by inserting a CEILCHANGE(Rj , i) command Xi

execution units from the end of each CS accessing Rj , as in the for-loop of Proce-
dure INSERTCEILCHANGE(τ�,Rj ).

Theorem 2 Any task system that is feasible under EDF + SRP also meets all dead-
lines when scheduled using EDF scheduling in conjunction with this modified resource
access protocol.

Proof Suppose a task system τ is feasible by EDF + SRP but cannot be scheduled
by the modified resource access protocol. Thus, there must exist a set of jobs J
generated by τ that will meet all deadlines for EDF + SRP, but miss a deadline under
the modified protocol. Consider the schedule S for J under the modified protocol,
and let t be the earliest time that some job of J misses a deadline in S . Let t0 be the
last time prior to t such that there are no pending jobs (with respect to schedule S )
with deadlines at or before t . Baker (1991) proved that for any such interval [t0, t)
there can be at most one job with deadline > t that executes during [t0, t) under SRP.
An identical proof may be used to show that this property holds for the modified
protocol. Thus, all other jobs executed in S during [t0, t) must have deadlines at or
before t and be pending at some point in [t0, t); define J ′ ⊆ J to be this set of jobs.
Note that every job of J ′ must have arrival times also in the interval [t0, t) (otherwise,
this would contradict our choice of t0) and is, therefore, generated by a task τ� ∈ τ

such that D� ≤ t − t0. Let τi be the task with largest relative deadline not exceeding

t − t0 (i.e., τi
def= arg maxτi∈τ :Di≤(t−t0){Di}).

Because τ is feasible under EDF + SRP, (2) implies

DBF(τ, t − t0) ≤ t − t0.
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By definition of demand bound function, DBF(τ, t − t0) is an upper bound on the
total execution requirement of J ′ over the interval [t0, t). Thus, the total execution
requirement of J ′ cannot exceed t − t0. Since a deadline miss occurred at time t and
the execution requirements of J ′ over [t0, t) do not exceed t − t0, there must exist
exactly one blocking job, Jblock, with deadline > t that executes over [t0, t). For a
deadline miss to occur at time t , the following condition must hold.

(Total Execution by Jblock over [t0, t)) + (Execution Requirement of J ′) > t − t0.

(12)
Equation (12) and the fact that DBF(τ, t − t0) is an upper bound on the execution
requirement of J ′ imply that the total execution of Jblock in S over [t0, t) exceeds
[(t − t0) − DBF(τ, t − t0)].

Observe that Jblock has deadline > t ; thus, Jblock must arrive prior to t0 and hold
a lock on some resource Rj with �D(Rj ) ≤ i at time t0 (otherwise, Jblock would
not be able to block any jobs of J ′ according to the modified protocol). Therefore,
Jblock must have been generated by some task τk ∈ τ with Dk > t − t0. Let zt0 be
the remaining execution at time t0 of Jblock on a critical section locking Rj . By the
statement following (12),

zt0 > [(t − t0) − DBF(τ, t − t0)]. (13)

According to INSERTCEILCHANGE(τk,Rj ), it must be that either �(Rj ) is less
than or equal to i or that �D(Rj ) is set to i with Xi execution units remaining
in a critical section locking Rj . In the case that �(Rj ) is at most i, notice that,
according to Definition 1, B(t − t0) ≥ zt0 because Di ≤ t − t0 and Dk > t − t0.
However, (13) implies that B(t − t0) > [(t − t0) − DBF(τ, t − t0)] which contradicts
(2) and the fact that τ is feasible by EDF + SRP. Therefore, �(Rj ) must exceed i.
In the case that �D(Rj ) is set to i with Xi execution units remaining, Xi equals
min(βi, βi+1, . . . , β�(Rj )−1, Skj ). By the value of Xi , the definition of βi (3), and
the fact that Di ≤ t − t0 < Dk , it must be that Xi ≤ [(t − t0) − DBF(τ, t − t0)].
Equation (13) implies that Xi < zt0 . However, since �(Rj ) must exceed i, �D(Rj )

cannot be ≤ i with more than Xi units of execution in the critical section. There-
fore, �D(Rj ) > i at time t0. This contradicts the execution of Jblock over [t0, t). In
both cases, we have derived a contradiction. Hence, our assumption that τ is not
schedulable according to the modified resource access protocol is false; the theorem
immediately follows. �

The above theorem proves the optimality of our modified resource access protocol
with relation to the schedulability of sporadic task sets accessing shared resources.
Moreover, since critical sections are less likely to be preempted under the modified
resource access protocol than under SRP, it follows that

Lemma 3 The resource holding time RHT(Rj ) of resource Rj is never greater, and
may be less, under the modified resource access protocol than under EDF + SRP

scheduling, for all resources Rj .

Even if Lemma 3 states that the proposed modified resource access protocol is
superior to conventional SRP with relation to resource holding times, it is an open
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question whether resource-holds times can be further minimized. In regards to com-
putational complexity, it is easy to verify that the computation of the ceiling-change
points has polynomial run-time complexity, once the blocking tolerances have been
computed during the initial feasibility analysis.

5.3 Computing RHT(Rj , τi) for the modified protocol

The computation of resource-hold times for the modified protocol is closely related
to the computation of resource-hold times for EDF + SRP (described in Sect. 3). The
major difference for the modified protocol is that the worst-case response times to
each “ceiling-change” command must be computed before the overall resource-hold
time may be determined; in contrast, for EDF + SRP only the worst-case response time
for a task’s execution on a critical section for shared resource Rj must be calculated.
In this subsection, we will describe a method for computation of RHT(Rj , τi) under
the modified protocol and prove the correctness of the computation.

Assume that task τi obtains a lock on shared resource Rj at time tij . Let the
set {X�(Rj ),X�(Rj )−1, . . . ,X1} be the X� variables computed during the procedure
INSERTCEILCHANGE(τi,Rj ). The following observations are helpful for calculating
RHT(Rj , τi):

1. The maximum response time from tij to a call to CEILCHANGE(Rj , �) occurs
when each task τ1, . . . , τ�(Rj )−1 releases a job “immediately” after tij , and succes-
sive jobs are released as soon as legally possible. This arrival situation is identical
to the critical-instant arrival sequence described in Theorem 1. We will formally
prove this observation in Lemma 4.

2. Task τi must execute for exactly Sij − X� time before CEILCHANGE(Rj , �)

is executed by τi while in its critical section for Rj . This observation follows
immediately from the insertion of the ceiling-change commands by INSERT-
CEILCHANGE(τi,Rj ).

3. After CEILCHANGE(Rj , �) has been executed by τi , only jobs of tasks τ1, τ2, . . . ,

τ�−1 can preempt the execution of τi ’s critical section on shared resource Rj .
4. The function RBF(τ�, τi, t) (8) continues to represent an upper bound on the cu-

mulative execution of task τ� that can preempt τi during its critical section ac-
cess in the interval (tij , tij + t). Let t ′ be the time at which τi executes the
CEILCHANGE(Rj , �) command. For all t such that 0 < t < t ′, RBF(τ�, τi, t) is
a tight upper bound on the execution of τ� that could preempt τi ’s critical section
in the interval (tij , tij + t). For all t ≥ t ′, RBF(τ�, τi, t

′) is a tight upper bound; this
follows from observation (3) that τ� could not preempt τi ’s critical section after
time t ′.

Observation (1) implies that the response time to the CeilChange(Rj , �) command
from tij can be determined by restricting attention to the critical-instant arrival
sequence. By observation (2), τi contributes Sij − X� time to execution up un-
til the call CeilChange(Rj , �). The execution of tasks τ1, . . . , τ�(Rj )−1 contribut-
ing to the response time of CeilChange(Rj , �) is dependent on the response times
of previous commands CeilChange(Rj , � + 1), . . . , CeilChange(Rj ,�(Rj ) − 1),
according to observations (3) and (4). The response time of CEILCHANGE(Rj , �)
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can thus be obtained by determining the response time of the previous ceiling
change commands. Let t∗i (k) be the response time of CEILCHANGE(Rj , k) after
tij . The below expression describes the cumulative execution requirements of tasks
τ1, . . . , τ�(Rj )−1 and the execution of τi up to CEILCHANGE(Rj , �) over the inter-
val (tij , tij + t), assuming the response time for the previous change commands (i.e.,
t∗i (�(Rj ) − 1), . . . , t∗i (� + 1)) have been determined.

W
(�)
i (t)

def= (Sij − X�) +
�∑

k=1

RBF(τk, τi, t) +
�(Rj )−1∑
k=�+1

RBF(τk, τi,min(t, t∗i (k))).

(14)
Similar to Sect. 3, we may use techniques from Joseph and Pandya (1986);

Lehoczky et al. (1989) to find the smallest fixed point of (14). For reasons identical
to those stated in Step 5 of Sect. 3, W

(�)
i (t) is guaranteed to have a fixed point, and

an iterative procedure for determining its fixed point is guaranteed to terminate. The
next lemma shows that the smallest fixed point for (14) corresponds to the maximum
response time to the (�(Rj ) − �)th ceiling change command.

Lemma 4 Let t∗i (�) be the smallest fixed point of W
(�)
i (t) (i.e., W

(�)
i (t∗i (�)) = t∗i (�)).

The maximum response time from the time τi locks resource Rj to the command
CeilChange(Rj , �) is t∗i (�). Furthermore, t∗i (�) is the response time obtained if all
tasks τ1, . . . , τ�(Rj )−1 simultaneously release a job ε time after τi locks the resource
(where ε approaches zero), and successive jobs are released as soon as legally per-
mitted.

Proof We will show the lemma by induction on �. First, we prove the base case,
� = �(Rj ) − 1; that is, we will show that t∗i (�(Rj ) − 1) is the maximum response
time from tij to CEILCHANGE(Rj ,�(Rj )−1). Note, by observation (2), τi executes
for Sij − X�(Rj )−1 time prior to the call to CEILCHANGE(Rj ,�(Rj ) − 1). From tij
to this first ceiling-change command there are no other ceiling change command. No-
tice, because there are no intervening ceiling-change commands between tij and the
first command, the logic of the five steps of Sect. 3 and Theorem 1 applies directly
to calculating the response time to the call CEILCHANGE(Rj ,�(Rj ) − 1). Thus, the
maximum response time to CEILCHANGE(Rj ,�(Rj )−1) can be calculated by find-

ing the smallest fixed point of W
(�(Rj )−1)

i (t) which by definition is t∗i (�(Rj ) − 1).
Furthermore, by the arguments of Theorem 1, the value t∗i (�(Rj ) − 1) corresponds
to the response time for CEILCHANGE(Rj ,�(Rj ) − 1) under the arrival scenario
of each task τ1, . . . , τ�(Rj )−1 releasing jobs simultaneously ε after tij (where ε ap-
proaches zero) and subsequent jobs as soon as legally permitted.

For the inductive hypothesis, assume that the smallest fixed points t∗i (�(Rj ) −
1), . . . , t∗i (� + 1) for the equations W

(�(Rj )−1)

i (t), . . . ,W
(�+1)
i (t), respectively, are

the maximum response times from tij to the respective ceiling-change commands
CEILCHANGE(Rj ,�(Rj ) − 1), . . ., CEILCHANGE(Rj , � + 1). Furthermore, assume
for each of these fixed points that the critical-instant arrival sequence achieves the
corresponding response time. We must show that the smallest fixed point t∗i (�) for
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W
(�)
i is the maximum response time to the call CEILCHANGE(Rj , �) from tij and

that the critical-instant arrival sequence will result in a t∗i (�) response time.
We first show that the critical-instant arrival sequence results in a response time of

t∗i (�) to the call CEILCHANGE(Rj , �) from time tij . By the inductive hypothesis, the
response times of calls CEILCHANGE(Rj ,�(Rj )−1), . . ., CEILCHANGE(Rj , �+1)

are t∗i (�(Rj ) − 1), . . . , t∗i (� + 1) under the critical-instant arrival sequence. Thus,
by observation (4), for each τk ∈ {τ�(Rj )−1, . . . , τ�+1}, the execution requests of
τk in the interval (tij , tij + t) for t ≤ t∗i (k) approach RBF(τk, τi, t); when t >

t∗i (k), the execution requests remains at RBF(τk, τi, t
∗
i (k)). Clearly, the remaining

tasks τk′ ∈ {τ�, . . . , τ1} have execution requests approaching RBF(τk′ , τi, t) under
the critical-instant arrival sequence in the interval (tij , tij + t), since the command
CEILCHANGE(Rj , k

′) has not been issued by time tij + t . By observation (2), τi

has execution requirement of Sij − X� from the lock of the resource to the call to

CEILCHANGE(Rj , �). Therefore, W
(�)
i (t) exactly describes the cumulative execution

requirements of tasks τ1, . . . , τ�(Rj )−1 and task τi under the critical-instant arrival

sequence for τi ’s lock of resource Rj . The smallest fixed point of W
(�)
i is the first

time-instant at which the processor can complete Sij −X� units of τi ’s critical section
and all the execution requests of tasks τ1, . . . , τ�(Rj )−1 that can preempt τi ’s critical
section. Thus, the CeilChange(Rj , �) command will be executed at time tij + t∗i (�)

in the critical-instant arrival sequence.
We now show that t∗i (�) represents the “worst-case” response time to the call

CEILCHANGE(Rj , �) for task τi . To show this statement, the reasoning closely fol-
lows the proof of Theorem 1. If any task τk ∈ {τ1, . . . , τ�(Rj )−1} releases its first job
later than tij + ε (where ε approaches zero), then the amount of execution requests
that τi can contribute to the interval (tij , tij + t∗i (�)) cannot increase. Moving the ac-
tivation of the first job of a task of τk before tij would either contradict the property
that τk did not have an active job at time tij (Step 3), or would result in a lower in-
terference (if the job completed its execution at time tij ). Therefore, under the arrival
sequence where all tasks except τk release jobs according to the critical-instant ar-
rival scenario, the interference in the interval (tij , tij + t∗i (�)) is at most W

(�)
i (t∗i (�)).

We have just shown that any deviation from the critical-instant arrival sequence re-
sults in a lower or equal response time. By inductively applying this same logic, it
can be shown that any other tasks deviating from the critical-instant arrival sequence
will also not increase the response time to call CeilChange(Rj , �). The maximum
response time is, therefore, t∗i (�). �

By the previous lemma, the maximum response time to the final ceiling-change
call in τi ’s critical section for Rj (i.e., CEILCHANGE(Rj ,1)) is the smallest fixed

point for function W
(1)
i (t) (i.e., t∗i (1)). After the call to CEILCHANGE(Rj ,1), the

dynamic ceiling, �D(Rj ), is set to one; the implication is that, after time tij + t∗i (1),
τi may execute its critical section non-preemptively until it releases shared resource
Rj . By observation (2), the amount of non-preemptive execution after tij + t∗i (1) is
Sij −X1. The next theorem below immediately follows from the previous statements.

Theorem 3 The maximum resource-holding time, RHT(Rj , τi), of resource Rj by
task τi under the modified protocol is equal t∗i (1) + Sij − X1.
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6 Conclusion

Recent developments in two emerging areas of real-time systems—open environ-
ments and multicore platforms—indicate that it is important to minimize the amount
of time that individual task systems keep specific resources locked (thereby denying
other independent, co-located task systems access the locked resource).

In this paper, we have presented a systematic and methodical study of this specific
behavioral feature. Our contributions include the following

• With respect to task systems that can be modeled using the resource-sharing spo-
radic task model, we have abstracted out what seems to be the most critical aspect
of such resource locking. We have formalized this abstraction into the concept of
resource hold times (RHT’s).

• We have presented an algorithm for computing RHT’s for resource-sharing spo-
radic task systems scheduled using the EDF + SRP framework. Although we have
selected this particular scheduling framework since it relates most closely to the
design of our planned open environment, our technique is general enough that it
may be adapted, with minimal changes, to other scheduling frameworks (such as,
for example, deadline-monotonic (DM) scheduling with resource arbitration done
according to the priority ceiling protocol (PCP), as proved in Bertogna et al. 2007).

• We have presented, and proved the optimality of, an algorithm for decreasing
RHT’s of resource-sharing sporadic task systems scheduled using the EDF + SRP

framework. Again, our technique is easily adapted to apply to systems scheduled
using other scheduling frameworks (such as DM + SRP Bertogna et al. 2007).

• We have considered the problem of RHT-minimization of resource-sharing spo-
radic task systems when we are not constrained to using the EDF + SRP framework.
To this end, we have modified SRP to come up with a more general resource ac-
cess protocol, and have presented and proved the correctness of an algorithm for
further decreasing RHT’s when a system is scheduled using this modified resource
access protocol in conjunction with EDF. Furthermore, we have described how to
compute RHT’s for the modified protocol.

As a future work, we intend to show how the techniques here described can be effi-
ciently applied in the context of open environments (in the model described in Fisher
et al. (2007a, 2007b)), as well as in the multiprocessor domain. Reducing the amount
of time for which a re source can be held will allow to overcome the major limita-
tions that these systems have when global resources can be shared among different
task sets.
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