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Abstract

Preemptive schedulers have been widely adopted in sin-
gle processor real-time systems to avoid the blocking asso-
ciated with the non-preemptive execution of lower priority
tasks and achieve a high processor utilization. However, un-
der fixed priority assignments, there are cases in which lim-
iting preemptions can improve schedulability with respect
to a fully preemptive solution. This is true even neglecting
preemption overhead, as it will be shown in the paper.

In previous works, limited-preemption schedulers have
been mainly considered to reduce the preemption overhead,
and make the estimation of worst-case execution times more
predictable. In this work, we instead show how to improve
the feasibility of fixed-priority task systems by executingthe
last portion of each task in a non-preemptive fashion. A
proper dimensioning of such a region of code allows in-
creasing the number of task sets that are schedulable with
a fixed priority algorithm. Simulation experiments are also
presented to validate the effectiveness of the proposed ap-
proach.

1 Introduction

A common misconception in the scheduling of Fixed Pri-
ority (FP) sporadic tasks with implicit deadlines on a single
processor system is that the best scheduler one can adopt
is fully preemptive Rate Monotonic (RM). Indeed,RM is
an optimal priority assignment for periodic task systems
scheduled withFP in a fully-preemptive way. However,
there can be cases in which limiting preemptions could im-
prove the schedulability. In other words, there exist spo-
radic task systems that are not schedulable with preemptive
RM, but can be scheduled using a limited preemptive pol-
icy. While this is a rather straightforward outcome when
preemption overhead is considered in each task’s WCET,
somewhat more surprising is the observation that limited
preemptive methods can be superior even when the preemp-
tion overhead is neglected.

A first example showing the dominance of limited pre-
emptive methods over fully preemptive and non-preemptive
scheduling in fixed priority systems was shown by Wang
and Saksena [17], using Preemption Thresholds. A particu-
larly interesting problem is how to exploit limited preemp-

tive scheduling to maximize the system schedulability. In
fact, for many task sets with total utilization less than or
equal to one that are unfeasible under preemptiveRM, a sim-
ple modification in the scheduler can lead to a performance
comparable toEDF. Burns [7] formulated a conjecture stat-
ing that “For any task set with total utilization less than or
equal to 100% there exists a dual priority assignment that
will meet all deadlines.” But such a result has never been
formally proved and still remains an open problem.

In this paper, we consider the non-preemptive execu-
tion of selected regions of code ofFP task systems, in or-
der to increase the feasibility over fully preemptive and
non-preemptive methods. In particular, if the last part of
a task is executed non-preemptively, the interference from
higher priority tasks can decrease significantly, so reducing
its response time. If the non-preemptive region is well di-
mensioned, this might be sufficient to achieve the task set
schedulability. However, note that the interference is re-
duced only when executing non-preemptively thefinal por-
tion of the task, since the higher priority requests are thus
postponed after the finishing time of the task. Instead, the
non-preemptive execution of other portions of code, differ-
ent from the final one, does not influence the task response
time, since the interference of the higher priority tasks isnot
avoided, but simply postponed to a later instant, before its
completion.

Contribution of the paper. In this paper, we address the
problem of improving the schedulability of sporadic task
systems scheduled with a Fixed Priority (FP) algorithm,
identifying a limited-preemption strategy that allows ex-
tending the feasibility limits of preemptive schedulers. To
do that, we exploit recent advancements in the theory of
limited-preemption scheduling. In particular, we determine
the longest duration of the final non-preemptive chunk of
each task that guarantees a feasible schedule, if there exists
one. The length of such a final part can also be used as a
bound for any non-preemptive region inside the same task.

Note that, in a previous work [19], the same problem of
identifying the longest non-preemptive region of each task
was addressed under the assumptions that the task set was
feasible under fully preemptive scheduling and tasks had
constrained deadlines. Although these assumptions allow
simplifying the complexity of the computation, restricting



the analysis to the first job of each task after a critical in-
stant, they prevent taking advantage of the potential of lim-
ited preemption scheduling to find a schedulable solution
when a task set is not feasible preemptively. In this paper,
we relax the assumptions of preemptive feasibility and con-
strained deadlines, and show how to dimension the last non-
preemptive region of each task to maximize schedulability.

Structure of the paper. The rest of the paper is organized
as follows. Section 2 presents the system model and the
terminology adopted in the paper. Section 3 discusses the
related work, while Section 4 briefly recalls the existing re-
sults for deferred preemption scheduling. Section 5 derives
an alternative schedulability test for deferred preemption
systems. Section 6 illustrates the analysis for maximizing
the length of the last non preemptive region of each task,
thus improving the system schedulability. Section 7 illus-
trates some simulation experiments aimed at evaluating the
average performance of the proposed solution against other
approaches. Finally, Section 8 states our conclusions and
future work.

2 System model and background

We consider a setτ composed ofn sporadic tasks [1]
τ1, τ2, . . . , τn executing upon a single processor platform
with preemption support. Each sporadic taskτi (1 ≤ i ≤ n)
is characterized by a worst-case execution time (WCET)Ci,
a relative deadlineDi and a minimum inter-arrival timeTi,
also referred to as period. Relative deadlines can be smaller
than, equal to, or greater than periods. All parameters are
assumed inR+. Each task generates an infinite sequence of
jobs, with the first job arriving at any time and subsequent
arrivals separated by at leastTi units of time.

Without loss of generality, we assume that tasks are in-
dexed in decreasing priority order (i.e., if0 < i < j ≤ n,
thenτi has higher priority thanτj).

When a taskτi is executed with deferred preemptions,
qmax
i andqlast

i denote the length of the largest and of the
last non-preemptive region ofτi, respectively. Unless oth-
erwise stated, we assumeqmax

i andqlast
i to be inR

+.
The objective of this work is to determine, for each task

τi, the largest value ofqlast
i that guarantees the schedulabil-

ity of the task set. Note that a largeqlast
i may decrease the

response time ofτi, reducing the interference it may suffer
from higher priority tasks. However,qlast

i cannot be arbi-
trarily large, to limit the blocking time imposed to higher
priority tasks.

We assume tasks to be independent (i.e., interacting with
non blocking primitives) and assume a negligible preemp-
tion overhead. Note that, although such an assumption can
be considered unrealistic, a secondary target of this work
is to reduce the number of preemptions as much as pos-
sible, thus decreasing the cache related preemption delays
and making task WCETs smaller and more predictable.

Hence, providing the largest possible non-preemptive re-
gion of each task is a key factor for reducing the number
of preemptions and their related cost. Moreover, the results
derived in this paper can be easily extended to a model that
takes preemption costs into account, seamlessly integrating
with previously proposed techniques that allow determin-
ing an optimal set of fixed preemption points to minimize
the overall preemption cost [3, 4].

For any sporadic taskτi and any non-negative numbert,
therequest bound functionRBFi(t) denotes the maximum
sum of the execution requests that could be generated by
jobs of τi arriving within a contiguous time-interval[a, b)
of lengtht. It has been shown [12] that the request bound
function for a sporadic taskτi is:

RBFi(t)
def
=

⌈

t

Ti

⌉

Ci. (1)

We also find it useful to define amodifiedrequest bound
functionRBF∗i (t) that considers all the execution requests in
a time-interval[a, b] of lengtht, including the right extreme
b. Then:

RBF∗i (t)
def
=

(⌊

t

Ti

⌋

+ 1

)

Ci. (2)

Note thatRBFi(t) andRBF∗i (t) are identical, except for mul-
tiples ofTi, whereRBF∗i (t) includes a further contribution
Ci. The cumulative execution request of all tasks with pri-
ority greater thanτi over any interval[a, b) of length t is
given by:

Wi(t)
def
=

i−1
∑

j=1

RBFj(t). (3)

Similarly, using a closed interval[a, b] of lengtht, we de-
fine:

W ∗
i (t)

def
=

i−1
∑

j=1

RBF∗j (t). (4)

It is possible to prove [6] that, for any instant of timet, there
exists an arbitrarily smallǫ > 0 such that

W ∗
i (t− ǫ) = Wi(t). (5)

3 Related work

The schedulability analysis of preemptive Fixed Prior-
ity task systems has been established in the early ages of
the real-time scheduling theory [14, 9, 12]. The main in-
terest in preemptive schedulers was motivated by the better
schedulability performance that preemption support guar-
antees when compared to non-preemptive strategies that
are not able to achieve a high utilization due to the large
blocking imposed to high priority jobs. Among preemptive
FP schedulers, Deadline Monotonic (DM) has been proved
in [13] to be an optimal priority assignment for sporadic
task systems with constrained deadlines, i.e., with deadlines
less than or equal to periods1. That means that if a task set

1DM is not optimal for sporadic task systems with arbitrary deadlines,
as proved in [11].



according to the mentioned model can be positively sched-
uled with a static priority scheduler, then it is also schedu-
lable withDM.

More recently, hybrid preemption strategies have been
considered for two main reasons:

1. To reduce the preemption overhead imposed by fully
preemptive schedulers, simplifying at the same time
the WCET analysis of the task system;

2. To improve the schedulability of fully preemptive sys-
tems, reducing the interference due to preemptions
from higher priority tasks.

The first target has been considered in [8, 6, 2, 18, 19, 3],
where different limited-preemption methods have been ex-
plored to limit the context switch overhead, without impos-
ing an excessive blocking to higher priority tasks. In [2, 18],
a preemption model is considered that does not specify the
exact location of the preemption points, which are assumed
to be “floating” within the task code. Under this floating
model, a method is proposed to compute, for each task
scheduled withEDF [2] or FP [18], an upper bound on the
maximum non-preemptive region that preserves the schedu-
lability of the task system. When a task set is not pre-
emptively feasible, the method fails, because no further im-
provement can be made when no information is available
on the location of the non-preemptive regions.

The second target has been addressed in [16], propos-
ing the preemption thresholdscheduling. In this model,
each task is assigned a nominal priority and a preemption
threshold. A preemption will take place only if the pre-
empting task has a nominal priority greater than the pre-
emption threshold of the executing task. An exact schedu-
lability analysis forFP with preemption thresholds has been
presented in [10]2.

4 Deferred preemption scheduling

In [8], the deferred preemptionmodel is proposed (also
called cooperative scheduling), according to which each
task is composed of a sequence of non-preemptive subjobs,
separated by a preemption point. Since a preemption can
take place only at subjob boundaries, the WCET analysis
is simplified, allowing an easier computation of the context
switch overhead. Moreover, the worst-case response time
of a task can be smaller than in the preemptive case, since
higher priority requests arriving during the execution of the
last subjob of the considered task are postponed after its
completion, potentially reducing the interference.

An exact schedulability analysis of the deferred preemp-
tion model has been presented in [6], noting that the largest
response time of a taskτi is found when (i) all higher pri-
ority tasks are released simultaneously withτi, and (ii) the

2The original analysis in [17] was flawed and has been corrected
in [15], which in its turn has been improved by [10].

longest subjob among the lower priority tasks starts execut-
ing an arbitrarily small amount of time earlier. This partic-
ular configuration of task releases is often called “critical
instant” of taskτi. However, the largest response time is
not necessarily found in the first instance ofτi after a criti-
cal instant, but can occur in later instances contained within
the level-i active period, defined as follows.

Definition 1. A level-i active periodis an interval[a, b)
such that the level-i pending workload is positive for allt ∈
(a, b), and it is null ina andb.

Definition 2. The level-i pending workloadW (t) at timet
is the amount of processing that still needs to be performed
at timet due to jobs released beforet by tasks with priority
higher than or equal toτi’s.

The maximum blockingBi that a taskτi can suffer due
to lower priority tasks is equal to the length of the longest
subjob among lower priority tasks3:

Bi = max
j>i

{

qmax
j

}

. (6)

The lengthLi of the largest level-i active period can be
computed using the following recurrent relation, with ini-
tial valueL

(0)
i = Bi + Ci:

L
(ℓ)
i = Bi +

i
∑

j=1

RBFj

(

L
(ℓ−1)
i

)

. (7)

In particular,Li is the smallest value for whichL(ℓ)
i =

L
(ℓ−1)
i . The number of jobs ofτi that are released in this

interval is given by

Ki =

⌈

Li

Ti

⌉

. (8)

This means that the response time ofτi must be computed
for all jobsτi,k with k ∈ [1, Ki].

For a generic jobτi,k, an upper bound on the start time
si,k of the last subjob can be computed considering:

• the maximum blocking time imposed toτi: Bi;

• the computation time of the preceding (k − 1) jobs:
(k − 1)Ci;

• the computation time of the subjobs ofτi,k, excluding
the last one:Ci − qlast

i ;

• the interference from higher priority tasks until the
start of the last subjob ofτi,k, i.e., in [0, si,k]:
W ∗

i (si,k).

3To be precise, the blocking is an infinitesimal amount smaller than
this value, because a lower priority subjob must start an arbitrarily small
amount of time earlier thanτi in order to block it.



Following [6], we distinguish the computation ofsi,k into
two cases, depending on whether the blockingBi is null or
not:






s
(ℓ)
i,k = Bi + kCi − qlast

i + Wi

(

s
(ℓ−1)
i,k

)

, if Bi > 0

s
(ℓ)
i,k = kCi − qlast

i + W ∗
i

(

s
(ℓ−1)
i,k

)

, if Bi = 0.

(9)
Note that the blocking is null for the lowest priority task,
as well as for each task that has all lower priority tasks ex-
ecuting in a fully preemptive way. When insteadBi is not
null, the blocking time given by Equation (6) is an arbitrar-
ily small amount larger than the real blocking imposed to
τi. This infinitesimal difference is compensated in the cor-
responding term of Equation (9) by adoptingWi instead of
W ∗

i for the cumulative execution requests of higher priority

tasks in[0, s
(ℓ−1)
i,k ].

The start timesi,k of the last subjob of a generic jobτi,k

can then be computed as the fixed point of Equation (9), us-
ing s

(0)
i,k = (k − 1)Ti + Ci − qlast

i as initial value. Since,
once started, the last subjob cannot be preempted, the fin-
ishing timefi,k can be computed as

fi,k = si,k + qlast
i . (10)

Hence, the response time of taskτi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (11)

Once the response time of each task is computed, the task
set is feasible if and only if

∀i = 1, . . . , n : Ri ≤ Di. (12)

5 Schedulability analysis

In order to compute the maximum length of the final sub-
job of each task that guarantees schedulability, we propose
an alternative formulation of the schedulability test for de-
ferred preemption systems.

As mentioned in Section 4, the schedulability of a taskτi

can be checked examining all jobsτi,k in the largest level-i
active period of lengthLi. Instead of computing the start
time si,k of the last subjob using the iterative method de-
scribed in Section 4, the following lemma adopts a different
technique.

Lemma 1. A task τi is feasible if and only if∀k ∈
[1, Ki], ∃t ∈ ((k − 1)Ti, (k − 1)Ti + Di − qlast

i ], such
that

t ≥

{

Bi + kCi − qlast
i + Wi(t), if Bi > 0

kCi − qlast
i + W ∗

i (t), if Bi = 0.
(13)

Proof. The proof is identical for bothBi > 0 andBi = 0.
Consider the critical instant configuration. The schedulabil-
ity of the first job ofτi is guaranteed if the last subjob of

τi,1 can start its execution at leastqlast
i time-units prior to

its deadline atDi. This happens if and only if Equation (13)
is verified, withk = 1, for somet ∈ (0, Di − qlast

i ]. This
is because at such a time the processor will have completed
(i) the blockingBi imposed by lower priority tasks, (ii) the
execution request ofτi up to the start of the last subjob of
τi,1, and (iii) the maximum cumulative execution requests
of higher priority tasks. Moreover, sincet ≤ Di−qlast

i , the
last subjob will have sufficient time to complete before the
deadline.

If the level-i active period is not over, the next jobτi,2 is
considered. This can be done replacingτi with a task having
computation time2Ci and deadlineTi + Di. This modified
task will have sufficient time to start its last subjob before
Ti +Di− qlast

i if and only if Equation (13) is verified, with
k = 2, for somet ∈ (0, Ti+Di−qlast

i ]. The lemma follows
applying the same procedure to each jobτi,k until the end
of the level-i active period, replacingτi with a job having a
computation time ofkCi and a deadline(k−1)Ti+Di.

Note that it is possible to significantly simplify the test
by observing that the only discontinuity points ofWi(t)
andW ∗

i (t) in Equation (13) coincide with release times of
higher priority tasks. LetΠi,k be the set of release times of
tasksτj≤i that are contained in((k−1)Ti, (k−1)Ti+Di−
qlast
i ], including as well the point at the end of the interval:

Πi,k
def
=

(

(k − 1)Ti, (k − 1)Ti + Di − qlast
i

]

∩

{hTj, ∀h ∈ N, j ≤ i} ∪
{

(k − 1)Ti + Di − qlast
i

}

.

Hence, we now reformulate the schedulability test on a re-
duced set of points.

Theorem 1. A fixed-priority task setτ with arbitrary dead-
lines and deferred preemptions is feasible if and only if for
every taskτi ∈ τ , ∀k ∈ [1, Ki], ∃t ∈ Πi,k, such that

• whenBi > 0 : Bi + kCi − qlast
i + Wi(t) ≤ t

• whenBi = 0, one of the following conditions holds:

1. kCi − qlast
i + Wi(t) < t;

2. For t̂ = (k − 1)Ti + Di − qlast
i :

kCi − qlast
i + W ∗

i (t̂) ≤ t̂.

Proof. From Lemma 1, a necessary and sufficient schedu-
lability condition for taskτi is that ∀k ∈ [1, Ki], ∃t ∈
((k− 1)Ti, (k− 1)Ti + Di− qlast

i ] such that Equation (13)
is satisfied. Consider thek-th job in the largest level-i ac-
tive period of taskτi. Note thatWi(t) andW ∗

i (t) in Equa-
tion (13) are both non-decreasing functions oft, whose only
discontinuity points are those inΠi,k. We treat separately
the cases withBi > 0 andBi = 0.

CaseBi > 0. Equation (13) becomes

Bi + kCi − qlast
i + Wi(t) ≤ t. (14)



The “if ” part of the theorem is trivially satisfied, noting that
all points inΠi,k are contained in((k − 1)Ti, (k − 1)Ti +
Di − qlast

i ]. Therefore, if there is a point inΠi,k that satis-
fies Condition (14), then the schedulability is guaranteed by
Lemma 1.

To prove the “only if” part of the theorem, we will
show that if there is a pointt′ /∈ Πi,k that satisfies Con-
dition (14) and that is contained in the considered interval
((k − 1)Ti, (k − 1)Ti + Di − qlast

i ], then the condition is
also satisfied at a point∈ Πi,k.

Take the smallest pointt′′ ∈ Πi,k such thatt′′ >
t′. SinceΠi,k includes all discontinuity points ofWi(t),
including the end of the considered interval, andWi(t)
is a non-decreasing function that is left-continuous, then
Wi(t

′′) = Wi(t
′). Therefore,

Bi + kCi − qlast
i + Wi(t

′′) =

Bi + kCi − qlast
i + Wi(t

′) ≤ t′ < t′′,

proving the statement.

CaseBi = 0. Equation (13) becomes

kCi − qlast
i + W ∗

i (t) ≤ t. (15)

SinceW ∗
i (t) is not left-continuous, we cannot immediately

apply the technique used in the previous case. Instead, we
prove that if there is a pointt′ ∈ ((k − 1)Ti, (k − 1)Ti +
Di − qlast

i ] that satisfies Condition (15), then one of the
following conditions is satisfied as well (the “only if” part
of the theorem):

1. there is a pointt′′ ∈ Πi,k that satisfies

kCi − qlast
i + Wi(t

′′) < t′′; (16)

2. t = (k − 1)Ti + Di − qlast
i satisfies Equation (15).

If t′ = (k − 1)Ti + Di − qlast
i , the second condition is

trivially satisfied. Otherwise, lett′′ be the smallest point∈
Πi,k such thatt′′ > t′. SinceΠi,k includes all discontinuity
points of W ∗

i (t), the following relation is verified for an
arbitrarily smallǫ > 0: W ∗

i (t′′ − ǫ) = W ∗
i (t′). Moreover,

from Equation (5),W ∗
i (t′′ − ǫ) = Wi(t

′′). Therefore,

kCi − qlast
i + Wi(t

′′) =

kCi − qlast
i + W ∗

i (t′) ≤ t′ < t′′,

and the first condition is satisfied, proving the statement.
It remains to prove the “if ” part of the theorem for the

caseBi = 0, i.e., that Condition 1. and 2. are also suf-
ficient for schedulability. The sufficiency of Condition 2.
trivially follows from Lemma 1, beinĝt ∈ ((k− 1)Ti, (k−
1)Ti + Di − qlast

i ]. To prove that Condition 1. is also suffi-
cient, consider a pointt′′ ∈ Πi,k that satisfies Equation (16).
We prove that there is also a pointt′ ∈ ((k − 1)Ti, (k −
1)Ti + Di − qlast

i ] that satisfies Equation (15), so that the

schedulability follows from Lemma 1. Lett′ = t′′ − ǫ, for
an arbitrarily smallǫ > 0. Sincet′′ belongs to the left-
open interval((k− 1)Ti, (k− 1)Ti + Di− qlast

i ], then also
t′ ∈ ((k − 1)Ti, (k − 1)Ti + Di − qlast

i ]. Moreover, since
Equation (16) has a strict inequality,t′ can be chosen such
that

kCi − qlast
i + Wi(t

′′) < t′ < t′′;

From Equation (5), we haveW ∗
i (t′) = W ∗

i (t′′ − ǫ) =
Wi(t

′′). Then,

kCi − qlast
i + W ∗

i (t′) =

kCi − qlast
i + Wi(t

′′) < t′,

proving the statement.
Repeating the same argument for all jobsτi,k: k ∈

[1, Ki] and for all tasksτi ∈ τ , the theorem follows.

6 Improving the schedulability

Whenever the locations of the non-preemptive regions
of each task are not given a priori, but can be freely decided
at design time, it is possible to decrease the response time
of a task by properly selecting the length of its last sub-
job. If a task is not feasible when executed preemptively, it
might be the case that executing the last chunk of that task
in a non-preemptive fashion might lead to a reduction in
the worst-case response time, moving the interference from
higher priority jobs after the completion of the task. In this
way, the response time might decrease enough to avoid a
deadline miss. However, care should be taken when select-
ing the length of the final subjob of a task, in order to avoid
an excessive blocking to higher priority tasks.

In this section, we show how to compute, for each task
τi, the length of the last subjob that maximizes the schedu-
lability. To do that, we first show that the response time of
a given task is minimized when the last subjob is as long as
possible. Then, we compute an upper bound of the length
of such a subjob, in order to avoid an excessive blocking to
higher priority tasks. Finally, we derive an algorithm that
computes the optimal length of the last subjob of each task
to maximize the schedulability of the whole task set.

6.1 Minimizing the response time

The next theorem shows that the response time of a task
is minimized when the last subjob is as long as possible.

Theorem 2. Decreasing the lengthqlast
i of the last subjob

of a taskτi in a system scheduled withFP cannot decrease
the response time ofτi, when all other tasks’ parameters
remain the same.

Proof. The proof is by contradiction. Suppose that a task
τi has a smaller response time when decreasingqlast

i to
q̂i

last = qlast
i − ∆q, with qlast

i ≥ ∆q > 0. Let τi,k be



the job corresponding to the largest response time ofτi af-
ter a critical instant, when the last subjob is of lengthqlast

i .
AssumeBi > 0. According to Equation (9), the start

time si,k of the last subjob ofτi,k can be derived as the
fixed point of the following relation

s
(ℓ)
i,k = Bi + kCi − qlast

i + Wi

(

s
(ℓ−1)
i,k

)

,

usings
(0)
i,k = (k − 1)Ti + Ci − qlast

i as initial value. A
similar relation can be used to derive the start timeŝi,k of
the last subjob ofτi,k when decreasingqlast

i to q̂i
last.

We first prove that

ŝi,k ≥ si,k + ∆q. (17)

To do that, we induct overs(ℓ)
i,k andŝ

(ℓ)
i,k.

Base case:̂s(0)
i,k ≥ s

(0)
i,k + ∆q.

Note that
s
(0)
i,k = (k − 1)Ti + Ci − qlast

i

and

ŝ
(0)
i,k = (k − 1)Ti + Ci − (qlast

i −∆q) = s
(0)
i,k + ∆q,

proving the base statement.
Induction step. If ŝ

(ℓ)
i,k ≥ s

(ℓ)
i,k + ∆q, then ŝ

(ℓ+1)
i,k ≥

s
(ℓ+1)
i,k + ∆q.

Using Equation (9), we get

s
(ℓ+1)
i,k = Bi + kCi − qlast

i + Wi

(

s
(ℓ)
i,k

)

,

and

ŝ
(ℓ+1)
i,k = Bi + kCi − (qlast

i −∆q) + Wi

(

ŝ
(ℓ)
i,k

)

.

Note thatWi(t) is a non-decreasing function oft that de-
pends only on the execution requests of higher priority
tasks. Sincês(ℓ)

i,k ≥ s
(ℓ)
i,k + ∆q by induction hypothesis, it

follows that
Wi

(

ŝ
(ℓ)
i,k

)

≥Wi

(

s
(ℓ)
i,k

)

.

Therefore,

ŝ
(ℓ+1)
i,k ≥ Bi + kCi− qlast

i +Wi

(

s
(ℓ)
i,k

)

+∆q = s
(ℓ)
i,k +∆q,

proving the statement, as well as Equation (17).
Using Equations (10) and (17), we get

f̂i,k = ŝi,k + qlast
i −∆q ≥ si,k + qlast

i = fi,k.

Therefore, the response time ofτi,k when decreasing the
last subjob length tôqlast

i cannot decrease, reaching a con-
tradiction.

When Bi = 0, the above considerations apply identi-
cally, usingW ∗

i (t) instead ofWi(t).

According to the above theorem, the response time of a
task is minimized when the last subjob is as long as pos-
sible, i.e., when maximizing the non-preemptive execution
at the end of the task. Unfortunately, the length of the final
non-preemptive region cannot be arbitrarily large, due to the
limits imposed by the higher priority tasks, which cannot be
blocked more than a given tolerance. In the next section, we
show how this tolerance can be computed.

6.2 Computing the blocking tolerance

The blocking toleranceβi of a taskτi is defined as the
maximum blocking that can be imposed toτi without miss-
ing any of its deadlines. We next show how to compute the
blocking tolerance of a task that has the last subjob of length
qlast
i .

We defineβi,k as the blocking tolerance of thek-th job of
τi after a critical instant. Using Theorem 1, the schedulabil-
ity of job τi,k can be checked using the following condition,
wheneverBi > 0:

∃t ∈ Πi,k : Bi ≤ t− kCi + qlast
i −Wi(t). (18)

Rephrasing the terms, we obtain

Bi ≤ max
t∈Πi,k

{

t− kCi + qlast
i −Wi(t)

}

.

The blocking tolerance of jobτi,k is therefore

βi,k = max
t∈Πi,k

{

t− kCi + qlast
i −Wi(t)

}

. (19)

The blocking tolerance of taskτi can be computed
by Theorem 1, selecting the minimum blocking tolerance
among the firstKi jobs ofτi in the level-i active period af-
ter a critical instant:

βi = min
k∈[1,Ki]

βi,k. (20)

A first problem is computingKi using Equation (8). In
fact, the lengthLi of the largest level-i active period de-
pends on the blocking imposed toτi, as shown in Equa-
tion (7). ButBi, that is set to the blocking tolerance ofτi,
is not yet known. To avoid this circular dependency, we can
use an upper bound on the blocking toleranceβi, given by
the blocking tolerance of the first jobτi,1 after a critical in-
stant. From Equation (20), we haveβi,1 ≥ βi. Therefore,
an upper bound on the largest level-i active period is given
by the first fixed point of the following recurrent relation:

L̂
(ℓ)
i = βi,1 +

i
∑

j=1

RBFj

(

L̂
(ℓ−1)
i

)

, (21)

with initial valueL̂
(0)
i = βi,1 + Ci. An upper bound on the

number of jobs ofτi that need to be checked to compute the
blocking toleranceβi is then given by

K̂i =

⌈

L̂i

Ti

⌉

. (22)



The blocking tolerance ofτi can then be computed as

βi = min
k∈[1,K̂i]

βi,k. (23)

Extending the minimum tôKi ≥ Ki jobs does not influence
the correctness of the computedβi, but only the number of
steps required to compute this value. From Equation (19),
it is easy to see that the blocking tolerancesβi,k do not de-
pend onBi, which can be set toβi,1 without affecting the
analysis.

Note that in the above method we assumedBi > 0. The
procedure is therefore correct only when the returned block-
ing tolerance is strictly positive. Whenever instead one of
the blocking tolerancesβi,k computed with Equation (19)
is null or negative, further rules are needed. In particular, if
βi,k is negative, the algorithm can stop, declaring the task
not schedulable. In fact,βi,k < 0 implies

∀t ∈ Πi,k : t− kCi + qlast
i −Wi(t) < 0,

SinceW ∗
i (t) ≥Wi(t), it follows

∀t ∈ Πi,k : kCi − qlast
i + W ∗

i (t) > t.

and taskτi has a deadline miss even when all lower priority
tasks execute preemptively without imposing any blocking.

If instead there is aβi,k = 0, job τi,k might be schedula-
ble with Bi = 0, if Condition 1. or 2. of Theorem 1 is sat-
isfied. Note that Condition 1. cannot be satisfied, because
βi,k = 0 implies

∀t ∈ Πi,k : kCi − qlast
i + Wi(t) ≥ t.

Instead, Condition 2. is satisfied if and only if

t̂− kCi + qlast
i −W ∗

i (t̂) = 0,

for t̂ = (k − 1)Ti + Di − qlast
i . In this case, the blocking

tolerance of jobτi,k is zero. If all the remaining jobs ofτi

in the considered level-i active period are also schedulable,
taskτi can be scheduled when all lower priority tasks are ex-
ecuted in a fully preemptive fashion, i.e.,qmax

j = 0, ∀j < i.
The procedure COMPUTEβ to compute the blocking tol-

erance of a taskτi with qlast
i > 0 is presented in Figure 1.

When instead a taskτi is scheduled fully preemptively
(qlast

i = qmax
i = 0), the schedulability can be checked us-

ing the classical condition derived in [11]:

∀k ∈ [1, Ki], ∃t ∈ Πi,k : Bi ≤ t− kCi −Wi(t). (24)

In that case, the blocking tolerance is easily derived as

βi = min
k∈[1,Ki]

max
t∈Πi,k

{t− kCi −Wi(t)} , (25)

and the task is schedulable whenβi ≥ 0.

JOBTOLERANCE(i, k)

1 βi,k ← max
t∈Πi,k

{

t− kCi + qlast
i −Wi(t)

}

2 if (βi,k = 0)
{

3 t̂ = (k − 1)Ti + Di − qlast
i

4 βi,k = t̂− Ci + qlast
i −W ∗

i (t̂)
}

5 return (βi,k)

COMPUTEβ
(

i, qlast
i > 0

)

1 βi,1 ← JOBTOLERANCE(i, 1)
2 if (βi,1 < 0) return (negative value)

� ComputeL̂i usingβi,1 as an upper bound onBi

3 L̂
(0)
i ← βi,1 + Ci

4 while
(

L̂
(ℓ+1)
i 6= L̂

(ℓ)
i

)

5

{

L̂
(ℓ+1)
i ← βi,1 +

∑

j≤i

RBFj

(

L̂
(ℓ)
i

)

}

6 K̂i ←
⌈

L̂i

Ti

⌉

� Computeβi,k for all jobs inL̂i

7 for
(

k =
{

2 . . . K̂i

}){

8 βi,k ← JOBTOLERANCE(i, k)

9 if (βi,k < 0) return (negative value)
}

10 βi = min
k∈[1,K̂i]

{βi,k}

11 return (βi)

Figure 1. Compute τi’s blocking tolerance.

6.3 Maximizing the schedulability

Now that we know how to compute the blocking toler-
ance for each task, Theorem 2 suggests a way to decrease
the response time of a given taskτi as much as possible
without compromising the schedulability of higher prior-
ity tasks. To avoid an excessive blocking to higher priority
tasks, the lengthqlast

i of the last subjob ofτi cannot exceed
the minimum blocking tolerance among the higher priority
tasks:

βmin
i

def
= min

j<i
{βj} , (26)

whereβ0 = ∞ for completeness. Sinceβmin
i could be

larger than the WCET ofτi, an optimal selection of the
length of the last subjob is

qlast
i ← min

{

Ci, β
min
i

}

, (27)

as proved in the following theorem.

Theorem 3. Settingqlast
i according to Equation(27) al-

lows minimizing the response time ofτi without affecting
the schedulability of higher priority tasks.



OPTSCHED(τ)

Initialize βmin ←∞
� Check tasks with deferred preemptions

1 for (i = 1; i ≤ n; i++)
{

2 qlast
i ← min{Ci, β

min}
3 βi ← COMPUTEβ

(

i, qlast
i

)

4 if(βi < 0) return (“Infeasible”)
5 if(βi = 0) break
6 βmin ← min{βi, β

min}
}

� Check remaining tasks executed preemptively
7 for (i = i + 1; i ≤ n; i++)

{

8 qlast
i ← 0

9 βi ← min
k∈[1,Ki]

max
t∈Πi,k

{t− kCi −Wi(t)}

10 if(βi < 0) return (“Infeasible”)
}

11 return
(

“Feasible with
{

qlast
i

}n

i=1
”
)

Figure 2. Procedure to maximize the task set
schedulability by deferred preemptions.

Proof. When Ci ≤ βmin
i , τi can be executed non-

preemptively without affecting the schedulability of higher
priority tasks. In this case, Theorem 2 guarantees that the
response time ofτi is minimized, sinceqlast

i is the maxi-
mum possible.

When insteadCi > βmin
i , qlast

i is set toβmin
i . Since

the blocking tolerances are tight, a largerqlast
i would cause

a deadline miss of at least one higher priority task, i.e., the
one with the smallest blocking tolerance. Conversely, se-
lecting a smallerqlast

i could not lead to a smaller response
time of τi, according to Theorem 2. Therefore, the smallest
response time that can be obtained forτi, without affect-
ing the schedulability of higher priority tasks, is obtained
settingqlast

i according to Equation (27).

To maximize the chances of finding a feasible solution
for the whole task set, an optimal strategy is to assign the
qlast
i lengths according to Equation (27), proceeding in pri-

ority order, starting from the highest priority task. Fig-
ure 2 shows the pseudocode of procedure OPTSCHED(τ)
for finding an optimal assignment of subjob lengths that
maximizes the schedulability of a given task setτ . Thefor
loop at line 1 evaluates all tasks in decreasing priority order,
assigningqlast

i according to Equation (27). Whenever a task
is found with a negative blocking tolerance, the procedure
returns an infeasible result. When instead a null blocking
tolerance is found, the task set might still be schedulable
if all remaining lower priority tasks are executed in a fully
preemptive way. The feasibility check for these tasks is ex-
ecuted in thefor loop at line 7, using Equation (25).

7 Experimental results

This section presents some simulation experiments on
randomly generated synthetic task sets aimed at evaluating
how the schedulability of the system varies as a function of
different task set parameters. The following scheduling al-
gorithms have been considered in the comparison, and pri-
orities were assigned according to the Deadline Monotonic
algorithm.

• Fully preemptive scheduling (FPS), where preemption
is allowed any time at arbitrary points.

• Non-preemptive scheduling (NPS), where preemption
is completely disabled.

• Preemption threshold scheduling (PTS), using the op-
timal threshold assignment presented in [16]4.

• Limited preemptive scheduling (LPS), using the
schedulability analysis presented in this paper.
The task set is deemed schedulable if procedure
OPTSCHED(τ) returns a feasible result.

Fully preemptive Earleast Deadline First (EDF) [14] has
been also included in all the graphs to evaluate the differ-
ence with respect to an optimal solution. Each individual
task set was generated as follows. TheUUniFast algo-
rithm [5] was used to generate a set ofn tasks with total
utilization equal toUtot. Then, each computation timeCi

was generated as a random integer uniformly distributed in
a given interval [100, 500], and the period was computed as
Ti = Ci/Ui.

The performance of the algorithms was evaluated by
comparing the ratio of feasible task sets, calculated as the
number of feasible task sets divided by the total number of
generated sets. In each experiment,5000 task sets were ran-
domly generated for each parameter configuration.

In the first experiment the number of tasks was set to
n = 10 and the system utilization was varied from 0.6 to 1,
with a step of 0.03. Figure 3 plots the feasible ratio when
deadlines are equal to periods, whereas Figure 4 shows the
results when relative deadlines are generated as a random
integer in the range [Ci + 0.5 · (Ti − Ci), Ti].

It is interesting to observe that both LPS and PTS im-
prove the schedulability level with respect to FPS, but our
approach (LPS) is able to achieve a larger improvement, es-
pecially for large utilizations. For example, notice that in
Figure 4 LPS is able to schedule 30% more task sets than
FPS forUtot around 0.9.

A second experiment has been carried out to test how
schedulability is affected by the number of tasks. Here, the

4As shown by Wang and Saksena in [17], the RM and DM priority
assignments may not be the optimal under PTS; however, to make the
comparison fair, the same priority assignment was used for all the tested
scheduling algorithms.
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Figure 3. Feasible ratio versus utilization
when D = T and n = 10.
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Figure 4. Feasible ratio versus utilization
when D ≤ T and n = 10.

total system utilization was set toUtot = 0.9 and the num-
ber of tasks was varied from 4 to 40. The results are re-
ported in Figure 5. Note that LPS always outperforms all
the other fixed priority algorithms, although the improve-
ment decreases for larger task sets. This can be explained
observing that a large task set is more likely to have smaller
blocking tolerances, due to the higher number of generated
deadlines. When a task is generated with a small deadline,
its blocking tolerance is also small. This limits the length
of the non-preemptive regions of the lower priority tasks,
so that LPS is not able to exploit its ability to improve
the schedulability. On the other hand, the performance of
NPS increases withn, because larger task sets tend to have
smaller computation times, which introduce smaller block-
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Figure 5. Feasible ratio as a function of n,
when D ≤ T and Utot = 0.9.
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Figure 6. Feasible ratio versus deadline dis-
tribution when D ≤ T , n = 10 and Utot = 0.9.

ing times in higher priority tasks.
A third experiment was performed to test the effect of

relative deadline distribution on the task set feasibility. In
this case, the task set includedn = 10 tasks, with a fixed to-
tal utilizationUtot = 0.9, and each task deadline was gener-
ated as a random number in the range[Ci+α∗(Ti−Ci), Ti].
Results are reported in Figure 6. Note that increasing the
range of task deadlines (i.e., reducingα), all algorithms, in-
cluding EDF, degrade their performance, but LPS has still
the best performance among all the fixed priority schemes.

In a final experiment, we changed the distribution range
of task execution times and monitored how the system fea-
sibility level was affected. The result is not reported here
since no significant variation has been observed.



As a last remark, note that even if LPS has a better per-
formance than PTS in every considered scenario, no domi-
nance relation can be stated. In fact, there are task sets that
are schedulable with PTS but not with LPS. However, very
few such task sets have been found in our simulations (less
than one out of a thousand generated sets).

8 Conclusions

This paper showed that limited preemptive scheduling
is an effective method for improving the schedulability of
fixed priority systems. In particular, the presented ap-
proach provides an algorithm for computing the longest
non-preemptive region of each task, to be executed at the
end of the code, to reduce its response time as much as pos-
sible, without jeopardizing the schedulability of the higher
priority tasks.

Experimental results on synthetic task sets showed that
limited preemptive scheduling is able to achieve an average
schedulability level higher than preemption thresholds, for
all task set utilizations.

As a future work, we intend to implement a policy that
combines the benefits of deferred preemption scheduling
and preemption thresholds. We believe this hybrid policy
could potentially allow a larger least upper bound on the
schedulable utilization of fixed priority systems, answering
to the open problem on the achievable utilization of dual
priority assignments [7].
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