Improving Feasibility of Fixed Priority Tasks using Non-Preemptive Regions

Marko Bertogna, Giorgio Buttazzo Gang Yao
Scuola Superiore Sant’Anna, Pisa, Italy University of lllinois at Urbana-Champaign, USA
{mar ko, giorgio}@ssup.it gangyao@/|! li noi s. edu
Abstract tive scheduling to maximize the system schedulability. In

. . o f f k ith | utilization | h
Preemptive schedulers have been widely adopted in sm-aCt’ or many task sets with total utilization less than or

| -t N ; id the blocki ‘equalto one that are unfeasible under preemjgtivea sim-
gle processor real-ime Systems 1o avoid the blocking asso ple modification in the scheduler can lead to a performance
ciated with ‘h?‘ non-preemptive execution of lower priority comparable t&DF. Burns [7] formulated a conjecture stat-
task§ and a_ch!eve a h'gh processor utilization. Howeyer, un ing that “For any task set with total utilization less than or
der fixed priority assignments, there are cases in which lim- equal to 100% there exists a dual priority assignment that
iting preemptions can improve schedulability with respect will meet all deadlines.” But such a result has never been
to a fully preemptive solution. This is true even neglecting formally proved and stiil remains an open problem
preemption overhead, as it will be shown in the paper. In this paper, we consider the non-preemptivé execl-

In previous works, limited-preemption schedulers have tion of selected ,regions of code Bp task systems, in or-

been mainly considered to reduce the preemption overheadder to increase the feasibility over fully preemp’tive and
and make the estimation of worst-case execution times morenon-preemptive methods. In particular, if the last part of
predictable. In this work, we instead show how to improve : ’

o ' A . a task is executed non-preemptively, the interference from
the feasibility of fixed-priority task systems by execulttirey ; L S)
last portion of each task in a non-preemptive fashion. A higher priority tasks can decrease significantly, so retyci

. S ; Ctitsr nse time. If the non-preemptive region is well di-
proper dimensioning of such a region of code allows in- ts response time. If the non-preemptive region is well d

ina th ber of task sets that hedulabl .thmensioned,this might be sufficient to achieve the task set
créasing the number of task Sets that are schedulable wi schedulability. However, note that the interference is re-
a fixed priority algorithm. Simulation experiments are also

. ; duced only when executing non-preemptively tinal por-
E:g:iﬂted to validate the effectiveness of the proposed aPiion of the task, since the higher priority requests are thus

postponed after the finishing time of the task. Instead, the
non-preemptive execution of other portions of code, differ

1 Introduction ent from the final one, does not influence the task response
time, since the interference of the higher priority tasksis

A common misconception in the scheduling of Fixed Pri- ayoided, but simply postponed to a later instant, before its
ority (FP) sporadic tasks with implicit deadlines on a single completion.

processor system is that the best scheduler one can adopt
is fully preemptive Rate MonotoniR{). Indeed,RM is Contribution of the paper. In this paper, we address the
an optimal priority assignment for periodic task systems problem of improving the schedulability of sporadic task
scheduled withFp in a fully-preemptive way. However, systems scheduled with a Fixed PriorityP(algorithm,
there can be cases in which limiting preemptions could im- identifying a limited-preemption strategy that allows ex-
prove the schedulability. In other words, there exist spo- tending the feasibility limits of preemptive schedulera T
radic task systems that are not schedulable with preemptivedo that, we exploit recent advancements in the theory of
RM, but can be scheduled using a limited preemptive pol- limited-preemption scheduling. In particular, we detereni
icy. While this is a rather straightforward outcome when the longest duration of the final non-preemptive chunk of
preemption overhead is considered in each task's WCET,each task that guarantees a feasible schedule, if thetts exis
somewhat more surprising is the observation that limited one. The length of such a final part can also be used as a
preemptive methods can be superior even when the preempbound for any non-preemptive region inside the same task.
tion overhead is neglected. Note that, in a previous work [19], the same problem of
A first example showing the dominance of limited pre- identifying the longest non-preemptive region of each task
emptive methods over fully preemptive and non-preemptive was addressed under the assumptions that the task set was
scheduling in fixed priority systems was shown by Wang feasible under fully preemptive scheduling and tasks had
and Saksena [17], using Preemption Thresholds. A particu-constrained deadlines. Although these assumptions allow
larly interesting problem is how to exploit limited preemp- simplifying the complexity of the computation, restriain

the analysis to the first job of each task after a critical in- Hence, providing the largest possible non-preemptive re-
stant, they prevent taking advantage of the potential of lim gion of each task is a key factor for reducing the number
ited preemption scheduling to find a schedulable solution of preemptions and their related cost. Moreover, the result
when a task set is not feasible preemptively. In this paper,derived in this paper can be easily extended to a model that
we relax the assumptions of preemptive feasibility and con- takes preemption costs into account, seamlessly integrati
strained deadlines, and show how to dimension the last nonwith previously proposed techniques that allow determin-
preemptive region of each task to maximize schedulability. ing an optimal set of fixed preemption points to minimize
the overall preemption cost [3, 4].
Structure of the paper. The rest of the paper is organized ~ For any sporadic task and any non-negative number
as follows. Section 2 presents the system model and thetherequest bound functionrBF;(t) denotes the maximum
terminology adopted in the paper. Section 3 discusses thesum of the execution requests that could be generated by
related work, while Section 4 briefly recalls the existing re jobs of ; arriving within a contiguous time-intervéd, b)
sults for deferred preemption scheduling. Section 5 dsrive of lengtht. It has been shown [12] that the request bound
an alternative schedulability test for deferred preemptio function for a sporadic task is:
systems. Section 6 illustrates the analysis for maximizing def | ¢
the length of the last non preemptive region of each task, RBFi(t) = {i-‘ Ci
thus improving the system schedulability. Section 7 illus- o) -
trates some simulation experiments aimed at evaluating the/Ve also find it useful to define modifiedrequest bound
average performance of the proposed solution against othefUnctionRBF; (t) that considers all the execution requests in
approaches. Finally, Section 8 states our conclusions and time-intervala, b] of lengtht, including the right extreme

(1)

fut K. b. Then: .
vture wor RBF; (t) ef QTLJ + 1) C;. 2
2 System model and background Note thalRBF; (¢) andrBF; (¢) are identical, except for mul-

tiples of T;, wherersF; (¢) includes a further contribution
C;. The cumulative execution request of all tasks with pri-

We consider a set composed of sporadic tasks [1] ority greater than; over any intervala, b) of lengtht is

T, T, ..., Tn €Xecuting upon a single processor platform ")

with preemption support. Each sporadic taskl < i < n) given by dof 2

is characterized by a worst-case execution time (WGET) Wi(t) = Z RBF;(t). 3)
a relative deadlind; and a minimum inter-arrival tim&;, j=1

also referred to as period. Relative deadlines can be smalle gimijarly, using a closed intervad:, b] of lengtht, we de-
than, equal to, or greater than periods. All parameters arefjpe-
assumed ifR ™. Each task generates an infinite sequence of
jobs, with the first job arriving at any time and subsequent
arrivals separated by at ledstunits of time.]] .)
Without loss of generality, we assume that tasks are in- ItiS possible to prove [6] that, for any instant of tiyéhere
dexed in decreasing priority order (i.e.0if< i < j < n, €Xists an arbitrarily small > 0 such that
thenr; has higher priority tharm;). Wt —) = Wilt).)
When a taskr; is executed with deferred preemptions, ' ’
q™* andq!*st denote the length of the largest and of the
last non-preemptive region of, respectively. Unless oth-
erwise stated, we assumg®® andq!?** to be inR™. N _ S _
The objective of this work is to determine, for each task The schedulability analysis of preemptive Fixed Prior-
7;, the largest value afie** that guarantees the schedulabil- ity task systems has been established in the early ages of
ity of the task set. Note that a largg#*t may decrease the the real-ime scheduling theory [14, 9, 12]. The main in-
response time of;, reducing the interference it may suffer terest in preemptive schedulers was mot|_/ated by the better
from higher priority tasks. Howeveg/®*t cannot be arbi- schedulability performance that preemptl_on suppor; guar-
trarily large, to limit the blocking time imposed to higher @antees when compared to non-preemptive strategies that
priority tasks. are n_ot a_ble to achle_/e a h_|gh u_t|I|zat|on due to the Ie_lrge
We assume tasks to be independent (i.e., interacting withP!0cking imposed to high priority jobs. Among preemptive
non blocking primitives) and assume a negligible preemp- 7P Schedulers, Deadline Monotonio) has been proved
tion overhead. Note that, although such an assumption carf? [13] to be an optimal priority assignment for sporadic
be considered unrealistic, a secondary target of this work(@Sk Systems with constrained deadlines, i.e., with deeslli
is to reduce the number of preemptions as much as pos_Iess than or equal to periodsThat means that if a task set
sible, thus decreasing the cache related preemption delays iy is not optimal for sporadic task systems with arbitrary dieas,
and making task WCETs smaller and more predictable. as proved in [11].

1—1
AGREPEO) (4)
j=1

3 Related work

according to the mentioned model can be positively sched-longest subjob among the lower priority tasks starts execut
uled with a static priority scheduler, then it is also schedu ing an arbitrarily small amount of time earlier. This partic

lable withDm. ular configuration of task releases is often called “critica
More recently, hybrid preemption strategies have beeninstant” of taskr;. However, the largest response time is
considered for two main reasons: not necessarily found in the first instancerpfafter a criti-

cal instant, but can occur in later instances containedmvith
1. To reduce the preemption overhead imposed by fully thelevel+ active period defined as follows.
preemptive schedulers, simplifying at the same time
the WCET analysis of the task system; Definition 1. A level+ active periodis an intervalfa, b)
such that the levelpending workload is positive for alle

2. To improve the schedulability of fully preemptive sys- (a,b), and it is null ina andb.

tems, reducing the interference due to preemptions

from higher priority tasks. Definition 2. Thelevel< pending workload¥ (t) at timet

The first target has been considered in [8, 6, 2, 18, 19, 3],is the amount o_f processing that still needs to_be p_erf_ormed
where different limited-preemption methods have been ex- 2t timet due to jobs released befar@y tasks with priority
plored to limit the context switch overhead, without impos- higher than or equal to’s.
ing an excessive blocking to higher priority tasks. In[2,18 . .
a greemption model is c%nsidgred Phat dges not spt[-:tzgify the he maximum blockings; that a task; can suffer due
exact location of the preemption points, which are assumed!© Iqwer priority tasks IS gqual to the length of the longest
to be “floating” within the task code. Under this floating subjob among lower priority tasks
model, a method is proposed to compute, for each task
scheduled wittebF [2] or FP[18], an upper bound on the
maximum non-preemptive region that preserves the schedu-
lability of the task system. When a task set is not pre- The lengthL; of the largest level-active period can be
emptively feasible, the method fails, because no furtherim computed using the following recurrent relation, with ini-
provement can be made when no information is availabletjz| vaIueL,fO) — B, + C;:
on the location of the non-preemptive regions.

B; = r?glx {qj } . (6)

The second target has been addressed in [16], propos- 0 ‘ (=1
ing the preemption thresholgcheduling. In this model, Li" =B+ Z RBF; (Lz') : (7)
each task is assigned a nominal priority and a preemption j=1

threshold. A preemption will take place only if the pre- _ _ -
empting task has a nominal priority greater than the pre-In particular, L; is the smallest value for whiclh;” =
emption threshold of the executing task. An exact schedu-Ll@—”, The number of jobs of; that are released in this
lability analysis forrp with preemption thresholds has been interval is given by
L.
K, = [—Z-‘ . (8)

presented in [16]
This means that the response timerpmust be computed

In [8], the deferred preemptiomodel is proposed (also for all jobs; ; with &k € [1, K;].
called cooperative schedulingaccording to which each For a generic jolr; 1, an upper bound on the start time
task is composed of a sequence of non-preemptive subjobssg; . of the last subjob can be computed considering:
separated by a preemption point. Since a preemption can
take place only at subjob boundaries, the WCET analysis ¢ the maximum blocking time imposed t¢: B;;
is simplified, allowing an easier computation of the context L . S
switch overhead. Moreover, the worst-case response time ® the comp.utauon time of the preceding - 1) jobs:
of a task can be smaller than in the preemptive case, since (k—1)Cs;
higher p_riority requests grriving during the executiontuod t e the computation time of the subjobsgf;, excluding
last subjob of the considered task are postponed after its the |ast oneC; — ¢lost;
completion, potentially reducing the interference.

An exact schedulability analysis of the deferred preemp- e the interference from higher priority tasks until the
tion model has been presented in [6], noting that the largest start of the last subjob ofr, i.e., in [0,s;]:
response time of a task is found when (i) all higher pri- W (sik)-
ority tasks are released simultaneously withand (ii) the

4 Deferred preemption scheduling

3To be precise, the blocking is an infinitesimal amount smahan
2The original analysis in [17] was flawed and has been comlecte this value, because a lower priority subjob must start aitrarty small
in [15], which in its turn has been improved by [10]. amount of time earlier than; in order to block it.

Following [6], we distinguish the computation ef ;. into 7,1 can start its execution at leagt*! time-units prior to

two cases, depending on whether the blockifhds null or its deadline afD,. This happens if and only if Equation (13)
not: is verified, withk = 1, for somet € (0, D; — g{**t]. This
® RN is because at such a time the processor will have completed
sipn = Bi+kCi — ¢ + W, (81-,,c) , if B; >0 (i) the blockingB; imposed by lower priority tasks, (i) the
Sl@; — kC; — st 4 W7 (ng];1)) 7 if B, — 0. execution“r_equest ufz-.up to the star'g of the Ias_t subjob of
b b 7i,1, and (iii) the maximum cumulative execution requests

. o (9) of higher priority tasks. Moreover, sin¢e< D; — qﬁ‘“t, the
Note that the blocking is null for the lowest priority task, |ast subjob will have sufficient time to complete before the
as well as for each task that has all lower priority tasks ex- geadline.
ecuting in a fully preemptive way. When inste& is not If the level active period is not over, the next job, is
_nuII, the blocking time given by Equation (6) is an arbitrar- gnsidered. This can be done replacingith a task having
ily small amount larger than the real blocking imposed 10 ¢ompytation timeC; and deadling;; + D;. This modified
7;- This infinitesimal difference is compensated in the cor- 55 will have sufficient time to start its last subjob before

responding term of Equation (9) by adoptifg instead of T; + D; — ¢l* if and only if Equation (13) is verified, with

W for the cumulative execution requests of higher priority ;. _ o forsZCJme: € (0,T;+D; —q*!]. The lemma follows

tasks in[0, sz(.fk’l)]. applying the same procedure to each jgh until the end
The start times, ;. of the last subjob of a generic job;, of the levels active period, replacing; with a job having a

can then be computed as the fixed point of Equation (9), us-computation time okC; and a deadlinéx—1)T;+D;. O

ing sfok) = (k —)T, + C; — ¢'*** as initial value. Since, o _ o o

once started, the last subjob cannot be preempted, the fin- Note that it is possible to significantly simplify the test

ishing time; ,, can be computed as by observing that the only discontinuity points @f;(t)
' andW;(t) in Equation (13) coincide with release times of
fik = sik +qlost, (10) higher priority tasks. Lell; . be the set of release times of

' tasksr;<; that are contained if(k — 1)7T;, (k—1)T;+ D; —
Hence, the response time of tagks given by ¢l*#], including as well the point at the end of the interval:

R; = kén[lé}l)gi]{fi,k — (k= 1Ti}. (11) W < (k= DT, (k — DT + D; — ¢ 0
- . las
Once the response time of each task is computed, the task {hT;,Vh e N,j < i} U{(k - 1)T; + D; — ;"' } .

set is feasible if and only if .
Y Hence, we now reformulate the schedulability test on a re-

Vi=1,....,n: R; <D (12) duced set of points.

.) Theorem 1. A fixed-priority task set with arbitrary dead-
5 Schedulability analysis lines and deferred preemptions is feasible if and only if for
every taskr; € 7, Vk € [1, K], 3t € II; , such that
In order to compute the maximum length of the final sub-
job of each task that guarantees schedulability, we propose ® WhenB; > 0: B; +kC; — /" + Wi(t) <t

an alternative formulation of the schedulability test fer d e whenB, = 0, one of the following conditions holds:
ferred preemption systems.
As mentioned in Section 4, the schedulability of a task 1. kC; — gl + Wi(t) < t;

can be checked examining all jobg; in the largest level- ST : last .
active period of lengthl;. Instead of computing the start 2. II:gr _ﬁ E‘t(k—ir MQ%;E)J;D; A

time s, 5, of the last subjob using the iterative method de- i A=

scribed in Section 4, the following lemma adopts a different pyoof, From Lemma 1, a necessary and sufficient schedu-
technique. lability condition for taskr; is thatVk € [1,K;],3t €

Lemma 1. A task r; is feasible if and only ifvk € ((k = DT;, (k = 1)T; + D; — ¢;**'] such that Equation (13)

_ _ (L _ _ - _ last is satisfied. Consider thieth job in the largest level-ac-
t[raéé{l]’ 3t € ((k = DT, (k = DTi + Di — ¢;**'], such 0 7 period of taskr;. Note thatiV;(t) andW;*(t) in Equa-
last . tion (13) are both non-decreasing functions,offhose only
. B +kC; — ¢, + Wi(t), if B; >0 (13) discontinuity points are those ifi; . We treat separately
kG — gt + W), if B; =0. the cases witlB; > 0 andB, = 0.

Proof. The proof is identical for bottB; > 0 andB; = 0. CaseB; > 0. Equation (13) becomes
Consider the critical instant configuration. The scheditab
ity of the first job ofr; is guaranteed if the last subjob of Bi + kC; — ¢l*t + Wi(t) < t. (14)

The “if " part of the theorem is trivially satisfied, noting that
all points inIl; ;, are contained if(k — 1)T;, (k — 1)T; +

D; — qf“t]. Therefore, if there is a point if; ;, that satis-
fies Condition (14), then the schedulability is guaranteed b
Lemma 1.

To prove the bnly if” part of the theorem, we will
show that if there is a point ¢ II, ;, that satisfies Con-
dition (14) and that is contained in the considered interval
((k — 1)T;, (k — 1)T; + D; — ¢!**'], then the condition is
also satisfied at a poirg I1; .

Take the smallest point” < II,; such thatt” >
t’. Sincell, ;, includes all discontinuity points ofV;(¢),
including the end of the considered interval, aid(t)
is a non-decreasing function that is left-continuous, then
Wi (t") = W;(t'). Therefore,

Bi + kC; — ¢}*" + Wi(t") =
BZ+kCZ last+W()§t1<t//7
proving the statement.

CaseB; = 0. Equation (13) becomes

kC; — gLt + Wi (t) < (15)

SinceW;(¢) is not left-continuous, we cannot immediately

schedulability follows from Lemma 1. Let = ¢ — ¢, for
an arbitrarily smalle > 0. Sincet” belongs to the left-
openinterval(k — 1)T;, (k — 1)T; + D; — ¢'**!], then also
t'e((k—1)T;, (k—1)T; + D; — ql‘“t] Moreover, since
Equation (16) has a strict inequality,can be chosen such
that

kC; — qﬁast + Wi(t”) <t < ﬁ”;
From Equation (5), we hav@*(t') = W (t" —¢) =
Wi (t"). Then,
k'CZ o qlfast ; (t/)
kC; — qgast +W; (t”)

proving the statement.
Repeating the same argument for all johs,: &
[1, K;] and for all tasks; € 7, the theorem follows.

6 Improving the schedulability

Whenever the locations of the non-preemptive regions
of each task are not given a priori, but can be freely decided
at design time, it is possible to decrease the response time
of a task by properly selecting the length of its last sub-
job. If a task is not feasible when executed preemptively, it

apply the technique used in the previous case. Instead, wénight be the case that executing the last chunk of that task

prove that if there is a point € ((k — 1)T;, (k — 1)T; +

D; — ¢'*s] that satisfies Condition (15), then one of the
following conditions is satisfied as well (thefily if” part

of the theorem):

1. thereis a point” € II; ;, that satisfies

k?CZ last + W() //, (16)

2. t=(k—1)T; + D; — ¢ satisfies Equation (15).

If ' = (k — 1)T; + D; — ¢'**!, the second condition is
trivially satisfied. Otherwise, let’ be the smallest point
I1; ,, such that” > t’. Sincell, j includes all discontinuity
points of W (t), the following relation is verified for an
arbitrarily smalle > 0: W*(t"” — ¢) = W;(¢'). Moreover,
from Equation (5)V(t" — €) = W;(t"). Therefore,

kEC; —

qiast + WZ (t”) _
kCi _ "

qiast +WZ*(t/) Stl <t ,

and the first condition is satisfied, proving the statement.
It remains to prove theif” part of the theorem for the
caseB; = 0, i.e., that Condition 1. and 2. are also suf-
ficient for schedulability. The sufficiency of Condition 2.
trivially follows from Lemma 1, being € ((k — 1)T;, (k —
1)T; + D; — ¢l***]. To prove that Condition 1. is also suffi-
cient, consider a pointt’ € II; j that satisfies Equation (16).
We prove that there is also a poitite ((k — 1)T;, (k —
)T; + D; — ¢l*t] that satisfies Equation (15), so that the

in a non-preemptive fashion might lead to a reduction in
the worst-case response time, moving the interference from
higher priority jobs after the completion of the task. Insthi
way, the response time might decrease enough to avoid a
deadline miss. However, care should be taken when select-
ing the length of the final subjob of a task, in order to avoid
an excessive blocking to higher priority tasks.

In this section, we show how to compute, for each task
7;, the length of the last subjob that maximizes the schedu-
lability. To do that, we first show that the response time of
a given task is minimized when the last subjob is as long as
possible. Then, we compute an upper bound of the length
of such a subjob, in order to avoid an excessive blocking to
higher priority tasks. Finally, we derive an algorithm that
computes the optimal length of the last subjob of each task
to maximize the schedulability of the whole task set.

6.1 Minimizing the response time

The next theorem shows that the response time of a task
is minimized when the last subjob is as long as possible.

Theorem 2. Decreasing the length/*¢ of the last subjob

of a taskr; in a system scheduled witte cannot decrease
the response time af;, when all other tasks’ parameters
remain the same.

Proof. The proof is by contradiction. Suppose that a task
7; has a smaller response time when decreagjfy to

inlast (Jf(“t Ag, with qﬁast > Aqg > 0. Let Tik be

the job corresponding to the largest response time af-
ter a critical instant, when the last subjob is of lengftt*.

AssumeB; > 0. According to Equation (9), the start
time s; ,, of the last subjob of; , can be derived as the
fixed point of the following relation

(Z) last +W ((/ 1))’

Sik = B; + kC; —
using s(ok) = (k — 1)T; + C; — ¢!*** as initial value. A
similar relation can be used to derlve the start tisng of

the last subjob of; , when decreasing/®*! to ¢ jlast
We first prove that

Sik > sik + Aq. (17)

To do that, we induct oveslm and§§f,2.

Base cases.)) > s\ + Ag.
Note that
last

(last

S0 = (k= DT+ Oy = (g} = Ag) = s17) + Aq,

proving the base statement.

Induction step. If 5{) > si) + Ag, thens{;" >
(z+1) +Ag.
Usmg Equation (9), we get

(/+1)

s = Bi+ kG, —

last + Wz (

(é))
z,k ’
and

S0Y = B kCi — (@ = Ag) + Wi (50)

Note thatiW;(¢) is a non-decreasing function ¢fthat de-

According to the above theorem, the response time of a
task is minimized when the last subjob is as long as pos-
sible, i.e., when maximizing the non-preemptive execution
at the end of the task. Unfortunately, the length of the final
non-preemptive region cannot be arbitrarily large, duééo t
limits imposed by the higher priority tasks, which cannot be
blocked more than a given tolerance. In the next section, we
show how this tolerance can be computed.

6.2 Computing the blocking tolerance

The blocking tolerance3; of a taskr; is defined as the
maximum blocking that can be imposedrowvithout miss-
ing any of its deadlines. We next show how to compute the
blocking tolerance of a task that has the last subjob of kengt
qgast_

We defines; i, as the blocking tolerance of tlieth job of
7; after a critical instant. Using Theorem 1, the schedulabil-
ity of job 7; ;. can be checked using the following condition,
wheneveB; > 0:

3t € I, : By <t —kCy + ¢l@t — Wi(t). (18)
Rephrasing the terms, we obtain
B; < max {t — kCi +¢;""" — Wi(t)}.
ell i,k
The blocking tolerance of job, j, is therefore
Bik = max {t — kC; + ql‘“’t Wi(ﬁ)}) (19)

tell; k

The blocking tolerance of task; can be computed
by Theorem 1, selecting the minimum blocking tolerance
among the firsf{; jobs ofr; in the levels active period af-
ter a critical instant:

Bi= min Giy. (20)

ke[1,K;)

A first problem is computind(; using Equation (8). In

pends only on the execution requests of higher priority fact, the lengthZ; of the largest level-active period de-

tasks. Sinceﬁgﬁz > 552 + Agq by induction hypothesis, it
follows that
£ £
Wz‘(5;2) =2 Wi (5512)
Therefore,
SOV = B kCi— g+ Wi (s) + Ag = s + Ag,

proving the statement, as well as Equation (17).
Using Equations (10) and (17), we get

fin=

Therefore, the response time gf;, when decreasing the

last

Sik + " — Ag>sip + ¢ = fir

last subjob length tg!e** cannot decrease, reaching a con-

tradiction.
When B; = 0, the above considerations apply identi-
cally, usingW;(¢) instead ofi?/; (). O

pends on the blocking imposed tg, as shown in Equa-
tion (7). ButB;, that is set to the blocking tolerance 6f

is not yet known. To avoid this circular dependency, we can
use an upper bound on the blocking tolerafigegiven by
the blocking tolerance of the first joly ; after a critical in-
stant. From Equation (20), we hage,; > ;. Therefore,

an upper bound on the largest leveadetive period is given
by the first fixed point of the following recurrent relation:

A ﬁ,1+ZRBF (s 1),

0)

(21)

with initial vaIueL = f3;,1 + C;. An upper bound on the
number of jobs of— that need to be checked to compute the
blocking tolerances; is then given by

(22)

The blocking tolerance af; can then be computed as

Bi

min G . (23)

ke[1,K;]

Extending the minimum t; > K; jobs does notinfluence
the correctness of the computgd but only the number of

steps required to compute this value. From Equation (19),

it is easy to see that the blocking toleranges do not de-
pend onB;, which can be set t@; ; without affecting the
analysis.

Note that in the above method we assunigd> 0. The
procedure is therefore correct only when the returned block
ing tolerance is strictly positive. Whenever instead one of
the blocking tolerances; , computed with Equation (19)
is null or negative, further rules are needed. In particufiar
Bi.r; is negative, the algorithm can stop, declaring the task
not schedulable. In fact; ;, < 0 implies

Vtell;, : t—kC; + qéast — Wl(t) <0,
SinceW(t) > W;(t), it follows

Vit € Hi,k : kCZ - ql_ast

K2

F W) > t.

and taskr; has a deadline miss even when all lower priority

tasks execute preemptively without imposing any blocking.
Ifinstead there is &, ,, = 0, job 7; ;, might be schedula-

ble with B; = 0, if Condition 1. or 2. of Theorem 1 is sat-

isfied. Note that Condition 1. cannot be satisfied, becausell

B = 0implies
Vt € Iy, : kCi — ¢l + Wi(t) > t.
Instead, Condition 2. is satisfied if and only if
= kCi + ¢*" = Wi (1) =0,

fort = (k — 1)T; + D; — ¢}**t. In this case, the blocking
tolerance of jobr; j, is zero. If all the remaining jobs af;
in the considered levelactive period are also schedulable,
taskr; can be scheduled when all lower priority tasks are ex-
ecuted in a fully preemptive fashion, i.e»** = 0,Vj < i.
The procedure GMPUTES to compute the blocking tol-
erance of a task; with ¢!*s* > 0 is presented in Figure 1.
When instead a task is scheduled fully preemptively
(¢last = ¢max = 0), the schedulability can be checked us-
ing the classical condition derived in [11]:

Vk € [1,Ki], dt e Hi,k :B; <t—kC; — Wt(ﬁ) (24)

In that case, the blocking tolerance is easily derived as

B; = min max {t — kC; — W;(1)},

25
kE[1,K;] teTl, & (25)

and the task is schedulable when> 0.

JOBTOLERANCE(%, k)

last
1 Bk max {t — kC; + gt —Wi(t)}
2 if (Bik=0){
3 t=(k—1T;+ D; — g**
4 Bik =t —Ci+ g™t =Wy (i) }

5 return (5 k)

CoMPUTES(i, ¢!t > 0)
1 (31 — JOBTOLERANCE(?, 1)
2 if (8;1 < 0) return (negative value)
> Computeii using/; 1 as an upper bound aB;
IA/I(‘O) — Bin + G
while (L{") 2 L))

{I:Z(-Hl) — Bi,1 +) RBF;
J<i
- b

> Computes; ;. for all jobs in L;

for (k: {ZKZ}) {
Bi.x < JOBTOLERANCE(i, k)

if (8i1 < 0) return (negative value}

] {Bix}

(1)}

7
8

10

fi = min
ke[l,K;

return (G;)

Figure 1. Compute 7;'s blocking tolerance.

6.3 Maximizing the schedulability

Now that we know how to compute the blocking toler-
ance for each task, Theorem 2 suggests a way to decrease
the response time of a given taskas much as possible
without compromising the schedulability of higher prior-
ity tasks. To avoid an excessive blocking to higher priority
tasks, the lengthle*t of the last subjob of; cannot exceed
the minimum blocking tolerance among the higher priority
tasks:

grin < min {3;}, (26)
1<t
where 3, = oo for completeness. Sinc&™" could be
larger than the WCET of;, an optimal selection of the
length of the last subjob is
last

q « min {O“ B;rm'n} ,
as proved in the following theorem.

(27)

Theorem 3. Settingg#** according to Equatior(27) al-
lows minimizing the response time gfwithout affecting
the schedulability of higher priority tasks.

OPTSCHED(T)
Initialize ™" «— oo
>> Check tasks with deferred preemptions
for (i = 1;i < m;i++) {

qfast - min{Ci, Bmin}

B; — COMPUTES (i, ¢*")

if (8; < 0) return (“1 nf easi bl e”)

if (8; = 0) break

ﬁ'rnin - min{ﬁi, ﬁ'rnin} }
> Check remaining tasks executed preemptively
for (i =i+ 1;i < myit++) {

qlfast

OOUThWNPE

— 0

Bi o Zoin | max { ()}

if(8; < 0) return (“I nf easi bl e”) }
return (*Feasi bl e with {gl*st}" ")

© 0 ~

10
11

Figure 2. Procedure to maximize the task set
schedulability by deferred preemptions.

Proof. When C; < g™, 1, can be executed non-
preemptively without affecting the schedulability of hegh

7 Experimental results

This section presents some simulation experiments on
randomly generated synthetic task sets aimed at evaluating
how the schedulability of the system varies as a function of
different task set parameters. The following scheduling al
gorithms have been considered in the comparison, and pri-
orities were assigned according to the Deadline Monotonic
algorithm.

e Fully preemptive scheduling (FPS), where preemption
is allowed any time at arbitrary points.

e Non-preemptive scheduling (NPS), where preemption
is completely disabled.

e Preemption threshold scheduling (PTS), using the op-
timal threshold assignment presented in {16]

e Limited preemptive scheduling (LPS), using the
schedulability analysis presented in this paper.
The task set is deemed schedulable if procedure
OPTSCHED(T) returns a feasible result.

Fully preemptive Earleast Deadline First (EDF) [14] has
been also included in all the graphs to evaluate the differ-
ence with respect to an optimal solution. Each individual

priority tasks. In this case, Theorem 2 guarantees that therask set was generated as follows. THEniFast algo-

response time of; is minimized, since;ﬁ“st is the maxi-
mum possible.

When instead”; > Bmin, glest is set togmi". Since
the blocking tolerances are tight, a larggt*! would cause
a deadline miss of at least one higher priority task, i.e, th
one with the smallest blocking tolerance. Conversely, se-
lecting a smaller!*st could not lead to a smaller response
time of -, according to Theorem 2. Therefore, the smallest
response time that can be obtained fgrwithout affect-
ing the schedulability of higher priority tasks, is obtaine
settingqg!*s! according to Equation (27). O

To maximize the chances of finding a feasible solution

for the whole task set, an optimal strategy is to assign the

qlet lengths according to Equation (27), proceeding in pri-
ority order, starting from the highest priority task. Fig-
ure 2 shows the pseudocode of procedurer&CHED(T)

for finding an optimal assignment of subjob lengths that
maximizes the schedulability of a given task sefThefor
loop at line 1 evaluates all tasks in decreasing priorityeard
assigningzi@** according to Equation (27). Whenever a task
is found with a negative blocking tolerance, the procedure
returns an infeasible result. When instead a null blocking

tolerance is found, the task set might still be schedulable

if all remaining lower priority tasks are executed in a fully
preemptive way. The feasibility check for these tasks is ex-
ecuted in thdor loop at line 7, using Equation (25).

rithm [5] was used to generate a setrotasks with total
utilization equal tolU;.;. Then, each computation tim&,
was generated as a random integer uniformly distributed in
a given interval 100, 500], and the period was computed as
T, = C;/U;.

The performance of the algorithms was evaluated by
comparing the ratio of feasible task sets, calculated as the
number of feasible task sets divided by the total number of
generated sets. In each experimé660 task sets were ran-
domly generated for each parameter configuration.

In the first experiment the number of tasks was set to
n = 10 and the system utilization was varied from 0.6 to 1,
with a step of 0.03. Figure 3 plots the feasible ratio when
deadlines are equal to periods, whereas Figure 4 shows the
results when relative deadlines are generated as a random
integer in the range; + 0.5 - (T; — C;), T3]

It is interesting to observe that both LPS and PTS im-
prove the schedulability level with respect to FPS, but our
approach (LPS) is able to achieve a larger improvement, es-
pecially for large utilizations. For example, notice that i
Figure 4 LPS is able to schedule 30% more task sets than
FPS forU;,; around 0.9.

A second experiment has been carried out to test how
schedulability is affected by the number of tasks. Here, the

4As shown by Wang and Saksena in [17], the RM and DM priority
assignments may not be the optimal under PTS; however, te riek
comparison fair, the same priority assignment was usedlftheatested
scheduling algorithms.

0.9 0.9 LPS
— % —PTS
0.8 0.8 —k—FPS
—A— NPS
0 0
g o7 g o7
~ ~
= k=
2 06 2o Frm e
. <0
@ L ¥ I e S
Qo Qo —F
3 05 B 05F—g]
b
K ks R ————— |
5 04 5 0.4 j
2 =]
S o3 S o3 A

I
N

°
i

%.6 OA‘65 0.‘7 0.‘75 018 0.‘85 019 0.‘95 1 OZ é 1‘0 1‘5 2‘0 2‘5 .’;0 ?:5 40
Total Utilization Number of Tasks
Figure 3. Feasible ratio versus utilization Figure 5. Feasible ratio as a function of n,
when D =T and n = 10. when D < T and U, = 0.9.
1————fT————R 1

o
~

o
~

o
1)
o
o

o

~

o

~
T

Ratio of Feasible task sets
o
a

o
w

Ratio of Feasible task sets
o o
w ol

o
)
o
)

0.13

o
-

o

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.1
Total Utilization

Figure 4. Feasible ratio versus utilization Figure 6. Feasible ratio versus deadline dis-
when D < T and n = 10. tribution when D <T,n =10and U, = 0.9.
total system utilization was set t,; = 0.9 and the num- ing times in higher priority tasks.

ber of tasks was varied from 4 to 40. The results are re- A third experiment was performed to test the effect of
ported in Figure 5. Note that LPS always outperforms all relative deadline distribution on the task set feasibility

the other fixed priority algorithms, although the improve- this case, the task set included= 10 tasks, with a fixed to-
ment decreases for larger task sets. This can be explainethl utilizationU;,: = 0.9, and each task deadline was gener-
observing that a large task set is more likely to have smallerated as a random number in the rafidetax (T, —C;), T;].
blocking tolerances, due to the higher number of generatedResults are reported in Figure 6. Note that increasing the
deadlines. When a task is generated with a small deadlinerange of task deadlines (i.e., reducimg all algorithms, in-

its blocking tolerance is also small. This limits the length cluding EDF, degrade their performance, but LPS has still
of the non-preemptive regions of the lower priority tasks, the best performance among all the fixed priority schemes.
so that LPS is not able to exploit its ability to improve In a final experiment, we changed the distribution range
the schedulability. On the other hand, the performance of of task execution times and monitored how the system fea-
NPS increases with, because larger task sets tend to have sibility level was affected. The result is not reported here
smaller computation times, which introduce smaller block- since no significant variation has been observed.

As a last remark, note that even if LPS has a better per- [7] A. Burns. Dual priority scheduling: Is the processor-uti
formance than PTS in every considered scenario, no domi-

nance relation can be stated. In fact, there are task séts tha

are schedulable with PTS but not with LPS. However, very
few such task sets have been found in our simulations (less [g] A. Burns. Preemptive priority-based scheduling: anrapp
than one out of a thousand generated sets).

8 Conclusions

This paper showed that limited preemptive scheduling
is an effective method for improving the schedulability of

fixed priority systems.

In particular, the presented ap- [10]
proach provides an algorithm for computing the longest

non-preemptive region of each task, to be executed at the
end of the code, to reduce its response time as much as pos-

sible, without jeopardizing the schedulability of the hégh
priority tasks.

[11]

Experimental results on synthetic task sets showed that
limited preemptive scheduling is able to achieve an average
schedulability level higher than preemption thresholds, f

all task set utilizations.

As a future work, we intend to implement a policy that
combines the benefits of deferred preemption scheduling
and preemption thresholds. We believe this hybrid policy
could potentially allow a larger least upper bound on the

schedulable utilization of fixed priority systems, answeri

to the open problem on the achievable utilization of dual
priority assignments [7].

[14]

References

(1]

(2]

(3]

(4]

(5]

(6]

S. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor
In Proceedings of the 11th Real-Time Systems Symposium
(RTSS’90)Orlando, Florida, 1990.

M. Bertogna and S. Baruah.
scheduling of sporadic task systemiEEE Transactions on
Industrial Informatics 6(4):579-591, 2010.

M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposit

and M. Caccamo. Preemption points placement for sporadic [17]

task sets. IfProceedings of the 22nd Euromicro Conference
on Real-Time Systems (ECRTS;Bussels, Belgium, June
2010.

M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and
G. Buttazzo. Optimal scheduling with variable preemption
overhead. IfProceedings of the 23rd Euromicro Conference
on Real-Time Systems (ECRTS;1H9rto, Portugal.

E. Bini and G. Buttazzo. Measuring the performance
of schedulability tests.Real-Time Syst.30(1-2):129-154,
2005.

R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worsteces:
sponse time analysis of real-time tasks under fixed-pyiorit
scheduling with deferred preemptiorReal-Time Systems:
The International Journal of Time-Critical Computirgp(1-
3):63-119, 2009.

[12

[13]

[15]

Limited preemption EDF [16]

[18]

[19]

isation bound 100%? IFroceedings of 1st International
Real-Time Scheduling Open Problems Seminar (RTSOPS)
Brussels, Belgium.

priate engineering approach. In Sang H. Son, edia¥,
vances in real-time systemgages 225-248. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1995.

M. Joseph and P. K. Pandya. Finding response times in a
real-time system. The Computer Journal29(5):390-395,
October 1986.

U. Keskin, R.J. Bril, and J.J. Lukkien. Exact respotisee
analysis for fixed-priority preemption-threshold schéul

In Work-in-Progress Session (WiP) of the 15th International
Conference on Emerging Technologies and Factory Automa-
tion (ETFA) Bilbao, Spain, September 2010.

J. P. Lehoczky. Fixed priority scheduling of periodasks
with arbitrary deadlines. IfEEE Real-Time Systems Sym-
posium (RTSS’90Prlando, Florida, 1990.

J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. IRroceedings of the Real-Time Systems Sym-
posium (RTSS’89Banta Monica, California, USA, Decem-
ber 1989.

J. Y.-T Leung and J. Whitehead. On the complexity of fixed
priority scheduling of periodic, real-time taskerformance
Evaluation 2:237-250, 1982.

C. L. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environmerdournal of
the ACM 20(1):46-61, 1973.

J. Regehr. Scheduling tasks with mixed preemption re-
lations for robustness to timing faults. IRAroceedings

of the IEEE International Real-Time Systems Symposium
(RTSS’02)Cancun (Mexico), December 2002.

M. Saksena and Y. Wang. Scalable real-time system desig
using preemption thresholds. Proceedings of the IEEE
Real-Time Systems Symposijwras Alamitos, CA, Novem-
ber 2000. IEEE Computer Society.

Y. Wang and M. Saksena. Scheduling fixed-priority tasks
with preemption threshold. IRroceedings of the Interna-
tional Conference on Real-time Computing Systems and Ap-
plications IEEE Computer Society, 1999.

G. Yao, G. Buttazzo, and M. Bertogna. Bounding the max-
imum length of non-preemptive regions under fixed priority
scheduling. IMRTCSABeijing, China, May—June 2009.

G. Yao, G. Buttazzo, and M. Bertogna. Feasibility asay
under fixed priority scheduling with fixed preemption points
In International Workshop on Real-Time Computing Systems
and Applications (RTCSAMacau, China, August 2010.

