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Abstract

BFQ (Budget Fair Queueing) is a production-quality,

proportional-share disk scheduler with a relatively large

user base. Part of its success is due to a set of simple

heuristics that we added to the original algorithm about

one year ago. These heuristics are the main focus of this

document.

The first heuristic enriches BFQ with one of the most

desirable properties for a desktop or handheld system:

responsiveness. The remaining heuristics improve the

robustness of BFQ across heterogeneous devices, and

help BFQ to preserve a high throughput under demand-

ing workloads. To measure the performance of these

heuristics we have implemented a suite of micro and

macro benchmarks mimicking several real-world tasks,

and have run it on three different systems with a single ro-

tational disk. We have also compared our results against

Completely Fair Queueing (CFQ), the default Linux disk

scheduler.

As a result of our heuristics: 1) whatever the disk load

is, interactive applications are virtually as responsive as if

the disk was idle; 2) latencies comparable to CFQ are still

guaranteed to time-sensitive, non-interactive applications,

as, e.g., audio and video players; 3) a high throughput is

achieved also in the presence of many concurrent requests

and sudden increases of the workload.

textbfKeywords Disk scheduling, latency, interactive

applications, soft real-time applications, throughput, fair-

ness.

1 Introduction

BFQ is a proportional-share disk scheduler [1] that allows

each application to be guaranteed the desired fraction of

the disk throughput, even if the latter fluctuates. This frac-

tion is established by assigning a fixed weight to each ap-

plication. In particular, during any time interval in which

the set of the applications competing for the disk is con-

stant, the fraction of the throughput guaranteed to each

competing application is equal to the ratio between the

weight of the application and the sum of the weights of

all the competing applications.

BFQ schedules applications as follows. Each applica-

tion is assigned a budget each time it is scheduled for

service. This budget is measured in number of sectors.

When selected, an application is granted exclusive access

to the disk until either it has consumed all of its assigned

budget or it has no more requests to serve. BFQ com-

putes and schedules budgets so as to both achieve a high

disk throughput, and closely approximate the service of

a perfectly fair fluid system. In this ideal system, each

application is guaranteed a minimum fraction of the disk

throughput, equal to the ratio between the weight of the

application and the sum of the weights of the other appli-

cations. The rate guaranteed to each application is there-

fore independent of the size of the budgets assigned to

the application. BFQ guarantees that each of the disk

requests issued by an application is completed within a

bounded delay with respect to when the request would be

completed in such an ideal (unfeasible) system.

Consider now applications that perform little I/O peri-

odically or sporadically, and such that, when they need

to perform some I/O, a single budget may be enough to

serve all of their requests. This is the case for most soft

real-time applications (as, e.g., audio and video players),

and for non-demanding interactive applications (as, e.g.,

command-line shells). Consider a batch of requests is-

sued by one of these applications, and suppose that all the

requests in this batch is served using a single budget. Fi-

nally, consider the delay by which this batch is completed

with respect to when the same batch would be completed

in the ideal system. The per-request delay guaranteed by

BFQ is such that this batch-delay grows with the differ-

ence between the budget assigned to the application and

the size of the batch. It follows that assigning the small-

est possible budget to applications is the key to guarantee

them a low per-batch delay.

More precisely, the per-batch delay guaranteed to an

application is minimum if, for each batch of requests the

application issues, the application is assigned a budget

equal to the size of the batch itself. The problem is that,

in general, the size of the next batch of requests of an ap-

plication is not known before the application starts to be

served. In fact, an application may issue new requests also

while it is being served. In this respect, BFQ computes

budgets through a simple feedback-loop algorithm, which

does assign small budgets only to applications that issue

small batches of requests. This guarantees that these ap-

plication do enjoy low latencies. It assigns instead large

budgets to disk-bound applications, and this is the way
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how BFQ also achieves a high disk throughput, as ex-

plained in Section 3.

On the opposite end, we stress that, as previously said,

BFQ guarantees a bounded per-request delay with respect

to an ideal system in which the fraction of the through-

put guaranteed to each application during any time inter-

val is independent of the budgets assigned to the applica-

tion, then also the fraction of the disk throughput guaran-

teed to each application in the long term by BFQ is inde-

pendent of the size of the budgets assigned to the appli-

cation. This property may seem counterintuitive at first

glance, because the larger the budget assigned to an ap-

plication is, the longer the application will use the disk

once granted access to it. But, as shown in more detail

in Subsection 3.1, BFQ balances this fact: the larger the

budgets assigned to an application are, the less frequently

BFQ lets the application access the disk.

BFQ has been implemented in the Linux kernel (by

Fabio Checconi and Paolo Valente) and compared against

several research and production schedulers [1]. It outper-

formed those schedulers in fulfilling the requirements of

applications ranging from file transfer (fairness and high

throughput) to WEB and video streaming servers (low la-

tency).

1.1 Limitations of the original version of

BFQ

Thanks to the above properties, BFQ allows a user to en-

joy the smooth playback of a movie while downloading

other files, and/or while some service is accessing the

disk. Yet, a further critical feature is needed for a high-

quality user experience: responsiveness, i.e., a low la-

tency in loading and hence starting up applications, and

in completing the batches of I/O requests that interactive

applications issue sporadically. Actually, starting appli-

cations (invoking commands) is one of the most common

actions a user performs.

What about responsiveness under BFQ? Consider a

typical scenario in which all applications are automat-

ically assigned the same weight by the operating sys-

tem. According to the same, above-discussed properties,

a small-size application does enjoy a low start-up time,

because serving a small batch of requests is enough to

load the application (as confirmed also by our experimen-

tal results in Subsec. 7.3). But what happens if larger ap-

plications are started on a loaded disk? This time the ef-

fects of the fairness of BFQ are reversed: if an application

is guaranteed only a fraction of the disk throughput and

other applications are competing for the disk as well, then

transferring many sectors may take a long time for that ap-

plication. For example, if an application takes 2 seconds

to start on an idle disk, then the same application takes

about 20 seconds (on average) under BFQ, if ten files are

being read at the same time. This is an unbearable wait

for a user.

A further important limitation of BFQ is that it has

been thoroughly tested on just one system, equipped with

a low-end disk (to make sure that the disk was the only

bottleneck), and under workloads generated by at most

five processes reading one private file each. The robust-

ness of BFQ should be verified across heterogeneous sys-

tems, including also RAIDs and solid-state drives (SSD).

More demanding workloads should be considered too,

i.e., workloads generated by even more processes and

where the request patterns may vary suddenly over time

(switching, e.g., from non-disk-bound to disk-bound).

Finally, modern rotational and solid-state devices can

internally queue disk requests and serve them either in

the best order for boosting the throughput, or even con-

currently. As of now, Native Command Queueing (NCQ)

is probably the most established technology. In previous

work [1] an important problem has been highlighted the-

oretically: with most mainstream applications, letting a

device freely prefetch and reorder requests should cause

both fairness and latency guarantees to be violated with

any scheduler, including BFQ. However, experimental ev-

idence was still missing.

1.2 Contributions reported in this docu-

ment

In this document we report the outcome of our first step

in overcoming the limitations of BFQ. Especially, we de-

scribe the following contributions.

• A set of simple heuristics added to BFQ, with the

following three goals: to improve responsiveness, to

preserve a high throughput under demanding work-

loads and to improve the robustness with respect to

heterogeneous disk devices. The resulting new ver-

3



sion of BFQ is called BFQ+ in this document and

BFQ-v1 in the patchsets that introduce BFQ in the

Linux kernel [2].

• A suite of micro and macro benchmarks [2] mim-

icking several real-world tasks, from reading/writing

files in parallel to starting applications on a loaded

disk, to watching a movie while starting applications

on a loaded disk.

• A detailed report of the results collected by running

the above suite with BFQ+, BFQ and CFQ, on three

Linux systems with a single rotational disk. The sys-

tems differed in both hardware and software config-

urations. One system was NCQ-capable, and we ran

the suite also with a simple FIFO scheduler on it.

In our experiments we did not consider either sched-

ulers aimed only at throughput boosting or real-time and

proportional-share research schedulers. The reasons are

the following. As for the former class of schedulers, on a

loaded disk it is hard for them to guarantee a low latency

to interactive applications. In contrast, many real-time

and proportional-share research schedulers do provide

latency guarantees comparable to BFQ. But, as shown

in [1], they may suffer from low throughput and degra-

dation of the service guarantees with mainstream applica-

tions. Addressing these issues again is out of the scope

of this document. More details on the issues related to all

these classes of schedulers can be found in Section 5.

Our results with BFQ+ can be summarized as follows:

differently from CFQ and whatever the disk load is, in-

teractive applications now experience almost the same la-

tency as if the disk was idle. At the same time, BFQ+

achieves up to 30% higher throughput than CFQ under

most workloads. The low latency of interactive appli-

cations is achieved by letting these applications receive

more than their fair share of the disk throughput. Never-

theless, the heuristic fits the accurate service provided by

BFQ well enough to still guarantee that non-interactive,

time-sensitive applications (as, e.g., video players) expe-

rience a worst-case latency not higher than 1.6 times that

experienced under CFQ.

The scheduling decisions made by BFQ+ comply with

keeping a high throughput also with flash-based devices

(Section 3). This fact and, above all, the new low-latency

features described in this document have made BFQ+ ap-

pealing to smartphones as well. In general, BFQ+ has

been adopted in a few Linux distributions and is currently

the default disk scheduler in some Linux-kernel variants

as well as in a variant of Android. See [2] for more infor-

mation.

As for disk-drive internal queueing, our results show

that NCQ does affect service guarantees as foreseen in [1].

Especially, when the disk is busy serving some disk-

bound application, the latency of interactive applications

may become so high to make the system unusable.

The other important systems to consider are RAIDs and

SSDs. We are investigating the issues related to these sys-

tems, together with further improvements for SSDs and

possible solutions to preserve guarantees also with NCQ.

We have already devised some improvements for BFQ

(and integrated them in the last releases of the sched-

uler [2]). These improvements are built on top of the

heuristics that we show in this document. Results with

RAIDs and SSDs will then be the focus of follow-up

work.

Organization of this document

In Section 2 we introduce both the system model and the

common definitions used in the rest of the document. The

original version of BFQ is then described in Section 3,

while the proposed heuristics can be found in Section 4.

Finally, after describing the related work and introducing

the problems caused by NCQ in Section 5, we describe the

benchmark suite in Section 6 and report our experimental

results in Section 7.

2 System model and common defini-

tions

We consider a storage system made of a disk device, a set

of N applications to serve and the BFQ or BFQ+ sched-

uler in-between. The disk device contains one disk, mod-

eled as a sequence of contiguous, fixed-size sectors, each

identified by its position in the sequence.

The disk device serves two types of disk requests: read-

ing and writing a set of contiguous sectors. We say that

a request is sequential/random with respect to another re-

quest, if the first sector (to read or write) of the request
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is/is not located just after the last sector of the other re-

quest. This definition of a random request is only formal:

the further the first sector of the request is from the last

sector of the reference request, the more the request is

random in real terms.

At the opposite end, requests are issued by the N ap-

plications, which represent the possible entities that can

compete for disk access in a real system, as, e.g., threads

or processes. We define the set of pending requests for an

application as the backlog of the application. We say that

an application is backlogged if its backlog is not empty,

and idle otherwise. For brevity, we denote an applica-

tion as random/sequential if most times the next request

it issues is random/sequential with respect to the previous

one. We say that a request is synchronous if the appli-

cation that issued it can issue its next request only after

this request has been completed. Otherwise we denote

the request as asynchronous. We say that an application

is receiving service from the storage system if one of its

requests is currently being served.

3 The original BFQ algorithm

In this section we outline the original BFQ algorithm (see

[1] for full details). BFQ+ is identical to BFQ, apart from

that it also contains the heuristics described in Sec. 4. To

make the main steps clear, we first describe a simplified

version of the algorithm, with some features omitted or

just sketched. Then we provide more details in the fol-

lowing subsections.

The logical scheme of BFQ is depicted in Fig. 1. Solid

arrows represent the paths followed by the requests until

they reach the disk device. There is a request queue for

each application, where the latter inserts its requests by

invoking the interface add request() function (details on

the Local C-LOOK scheduler below). We define the set

of requests present in one of these queues as the backlog

of the application owning the queue. We say that an appli-

cation is backlogged if its backlog is not empty and idle

otherwise.

Disk access is granted to one application at a time, de-

noted as the active application. Each application has a

budget assigned to it, measured in number of disk sec-

tors. When an application becomes the active one, it is

served exclusively until either this budget is exhausted
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Figure 1: Logical scheme of BFQ.

or the backlog of the application empties (the application

becomes idle). Then BFQ selects the new active appli-

cation, and so on. In other words, the active application

cannot be preempted until one of the above two events oc-

cur. More in detail, each time BFQ turns from not having

any application backlogged to having at least one applica-

tion backlogged, the Application service loop depicted in

Fig. 1 starts. This loop, repeated until there is at least one

backlogged application, can be sketched as follows:

1. Choice of the next active application The internal

fair-queueing scheduler, called B-WF2Q+ and de-

scribed in some detail in Subsec. 3.1, chooses the

next active application among the backlogged ones.

2. Request dispatch The loop blocks, waiting for the

disk device to invoke the dispatch() function. When

there is at least one backlogged queue, operating sys-

tem mechanisms around BFQ guarantee that the disk

driver will shortly invoke this function. When this

happens:

a The local C-LOOK scheduler chooses the request

to serve among those waiting in the queue of

the active application; this request is extracted

from that queue and dispatched to the disk

(right side of Fig. 1). Note that C-LOOK is ef-

fective with both rotational and non-rotational

devices, as both achieve maximum throughput

with sequential I/O.

b The budget of the application is decremented by
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the size of the dispatched request.

c If the budget of the application is exhausted or

the application has no more backlog (the actual

condition used here is slightly more complex,

as detailed in Subsecs. 3.4 and 3.5) jump to step

3, otherwise repeat step 2.

3. Application deactivation and budget re-

computation The application stops being the active

one, and it is assigned a new budget. A simple

feedback-loop algorithm, described in detail in Sub-

sec. 3.3, is used to compute the new budget.

3.1 B-WF2Q+ and service guarantees

Under BFQ each application is associated with a weight,

which controls the fraction of the throughput guaranteed

to the application. If an application is not assigned a

weight explicitly, then BFQ sets the weight of the applica-

tion to a common, system-wide value. The description of

the internal B-WF2Q+ scheduler provided in this subsec-

tion also shows in which way the weight of an application

determines the fraction of the throughput received by the

application.

The internal B-WF2Q+ scheduler is the key element

that enables BFQ to closely approximate the service that

would be guaranteed to each application by an ideal, per-

fectly fair fluid system [1]. Though achieving this goal

with a few simple operations, B-WF2Q+ is based on

non-trivial concepts. Especially, B-WF2Q+ is a slightly

extended version of the WF2Q+ packet scheduler [3],

adapted to disk scheduling and integrated with a spe-

cial timestamp back-shifting rule to preserve guarantees

in presence of synchronous requests. In this subsection

we do not enter into timestamp details, and just outline

the scheduling policy of B-WF2Q+ and its properties; see

[1] for a complete description of the algorithm.

The definition of B-WF2Q+ is based on the concept

of corresponding fluid system. First, by corresponding

we mean that this system serves the same applications as

the real system, i.e., the system on which BFQ runs, and

that, at all times, it has the same total throughput as the

real system. By fluid we mean instead that this system

can serve more than an application at a time. Especially,

the perfectly fair fluid system considered so far serves all

the backlogged applications at the same time, and pro-

vides each with a fraction of the total throughput equal to

the weight of the application divided by the sum of the

weights of the applications backlogged at the same time

instant. B-WF2Q+ internally simulates a corresponding

fluid system that, for efficiency issues (see [1]), is slightly

less accurate than a perfectly fair one. In more detail, the

difference with respect to the perfectly fair system is that

this less accurate system may not serve some of the back-

logged applications during some time intervals. On the

bright side, simulating this system is computationally less

expensive than simulating a perfectly fair one. For ease

of presentation, hereafter we pretend that also this sys-

tem provides a perfectly fair service. In any case, the

worst-case throughput distribution and delay guarantees

reported below are correct.

B-WF2Q+ implements the following policy: when

asked for the next active application at step 1 of the ap-

plication service loop, it considers only the applications

whose current budget would have already started to be

served in the simulated fluid system, and, among these,

it returns the one whose budget is the next to finish (in

the fluid system). Of course B-WF2Q+ is an on-line al-

gorithm, and hence does not know the future, so the next

budget to finish is computed assuming optimistically that:

1) no further application becomes backlogged before this

budget is finished in the fluid system, and 2) the appli-

cation does not empty its backlog before consuming all

of this budget. As long as these two conditions are met,

B-WF2Q+ succeeds in letting BFQ finish budgets in the

same order as the fluid system; otherwise some budgets

may be served out of order.

As proved in [1], this scheduling policy allows BFQ

to provide the following optimal worst-case guarantees

for a non-preemptible budget-by-budget service scheme:

BFQ guarantees that each request is completed with the

minimum possible worst-case delay with respect to when

the request would be completed in the fluid system in the

worst case (more precisely BFQ guarantees the minimum

possible worst-case delay for a budget-by-budget service

scheme). In addition, BFQ guarantees to each application

and over any time interval, the minimum possible lag with

respect to the minimum amount of service that the fluid

system guarantees to the application during the same time

interval. With worst-case request completion times in the

fluid system and with minimum amount of service guar-

6



anteed to the application in the fluid system, we mean the

completion times and the amount of service guaranteed in

the fluid system in case all applications are backlogged.

In more detail, both the worst-case delay of the requests

of an application and the worst-case lag of the applica-

tion are upper-bounded by a quantity equal to the sum

of: 1) a component proportional to the maximum budget

that BFQ may assign to applications, and 2) a component

proportional to the maximum possible difference between

the budget that may be assigned to the application and the

number of sectors that the application consumes before it

may become idle. To cancel or at least reduce the sec-

ond component, BFQ should assign a tight budget to each

application. This is one of the purposes of the budget-

assignment algorithm described in Subsection 3.3.

Before concluding this subsection, it is worth stressing

the following fact: B-WF2Q+ guarantees that either de-

lays or lags cannot accumulate over time (see the proofs

in [1] for details). And, as previously said, in the fluid

system the fraction of the disk throughput guaranteed to

each application is determined only by the weight of the

application (divided by the sum of the weights of the other

backlogged applications). This fraction is then indepen-

dent of the size of the budgets assigned to the application,

as the concept of budget is not used at all in the definition

of the service provided by the fluid system. In the end,

since B-WF2Q+ guarantees a bounded delay and lag with

respect to the fluid system, then, in the long term, also

B-WF2Q+ guarantees to each application a fraction of the

throughput independent of the size of the budgets assigned

to the application. This property may seem counterintu-

itive at first glance, because the larger the budget assigned

to an application is, the longer the application will use

the disk once granted access to it. But B-WF2Q+ basi-

cally balances this fact by postponing the service of an

application in proportion to the budget currently assigned

to the application. In fact, the larger the budget assigned

to an application is, the later this budget is completed in

the fluid system that B-WF2Q+ approximates. Finally, as

shown in Subsection 3.3, also the budgets assigned to an

application are independent of the weight of the applica-

tion.

For the reader interested at least into the intuition on

how B-WF2Q+ achieves a bounded deviation from the

fluid system, in the next subsection we sketch, intuitively,

the proof of the delay guarantees provided by B-WF2Q+.

Reading this subsection is not necessary to understand the

rest of this document.

3.2 Sketch of the proof of the delay guaran-

tees

We can intuitively assess the worst-case request comple-

tion times guaranteed by B-WF2Q+ by considering the

following two alternatives for the start time of a budget.

The first is that the start of the budget is not delayed by

any out-of-order service. In this case it is easy to prove

that the budget, and hence any request served using it, is

finished no later than when it would have been finished

in the fluid system. The second is that there is an out-

of-order service. According to what previously said, this

may happen only if one or both the above assumptions

made by B-WF2Q+ do not hold. In particular:

• An application becomes backlogged and its budget

happens to have a lower finish time, in the fluid sys-

tem, than the one of the budget of the currently ac-

tive application. In this case, as proven in [1], the

budget of the newly backlogged application will be

completed with a delay, with respect to the fluid sys-

tem, not higher than the time needed to finish (in the

real system) the out-of-order budget already under

service.

• The active application becomes idle, i.e., empties its

backlog, before consuming all of its budget. This

case has the worst consequences on delay. Once ac-

tivated, the application does finish its requests sooner

than expected, but, exactly for this reason, its activa-

tion may have been postponed for too long. In fact,

to decide the service order, B-WF2Q+ computes the

expected finish time of the budget of each application

in the simulated fluid system, assuming that the ap-

plication consumes all of its budget once become ac-

tive. Hence, if an application A becomes idle before

the budget is exhausted, it has been assigned a too

high finish time. As a consequence, other applica-

tions may be unjustly activated, and have their bud-

gets served, before A. As proven in [1], the worst-

case delay with respect to the fluid system in this

case is equal to the time to serve the portion of the

budget that the application does not use (i.e., the dif-
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ference between the budget and the number of sec-

tors served before the application becomes idle), at a

speed equal only to the fraction of the disk through-

put guaranteed by the fluid system to the application.

Of course, if both the above scenarios occur, the two de-

lay components sum to each other. Using the same argu-

ments it is possible to prove the guarantees of B-WF2Q+

in terms of lag.

3.3 Budget assignment

The decoupling between the budgets assigned to an ap-

plication and the fraction of the throughput guaranteed to

the application gives BFQ an important degree of free-

dom: for each application, BFQ can choose, without per-

turbing throughput reservations, the budget that presum-

ably best boosts the throughput or fits the application’s

requirements.

In the first place, BFQ might just assign a small bud-

get to any application. This would minimize both compo-

nents of the upper bound to the delay mentioned in Sub-

sec. 3.1. The problem is that small budgets would cause

BFQ to frequently switch between applications, and to not

fully benefit from the many sequential accesses that could

be performed by serving each of the possible sequential

applications for a sufficiently long time. In this respect,

consider that, when a new application is selected for ser-

vice, its first request is most certainly random with respect

to the last request of the previous application under ser-

vice. As a result, depending on the hardware, the access

time for the first request of the new application may range

from 0.1 ms to about 20 ms. After this random access,

in the best case, all the requests of the new application

are sequential, and hence the disk works at its peak rate

(more precisely, for a rotational disk, the peak rate for the

zone interested by the I/O). However, since the through-

put is zero during the access time for the first request, the

average disk throughput gets close to the peak rate only

after the application has been served continuously for a

long enough time. To put into context, even with a worst-

case access time of 20 ms, the average throughput reaches

∼90% of the peak rate after 150 ms of continuous service.

These facts are at the heart of the feedback-loop algo-

rithm of BFQ for computing budgets: each time an appli-

cation is deactivated, the next budget of the application is

increased or decreased so as to try to converge to a value

equal to the number of sectors that the application is likely

to request the next time it becomes active. However, the

assigned budgets can grow up to, at most, a disk-wide

maximum budget Bmax. BFQ computes/updates Bmax

dynamically. Especially, BFQ frequently samples the disk

peak rate, and sets Bmax to the number of sectors that

could be read, at the estimated disk peak rate, during a

disk-wide, user configurable, maximum time slice Tmax.

The default value of Tmax is 125 ms, which, according to

the above estimates, is enough to get maximum through-

put even on average devices. We describe in more de-

tail the feedback-loop algorithm and the disk peak rate

estimator in Subsecs. 4.2 and 4.3, where we show how,

by enhancing these components, we improve the service

properties and increase the throughput under BFQ.

3.4 Boosting the throughput with sequen-

tial synchronous requests

According the step 2.c of the application service loop,

when an application becomes idle, BFQ deactivates it and

starts serving a new application. However, if the last re-

quest of the application was synchronous, then the ap-

plication may be deceptively idle, as it may be already

preparing the next request and may issue it shortly. In

fact, a minimum amount of time is needed for an applica-

tions to handle a just-completed synchronous request and

to submit the next one.

For this reason, when an application becomes idle but

its last request was synchronous, BFQ actually does not

deactivate the application and hence does not switch to

another application. In contrast, in this case BFQ idles

the disk and waits, for a time interval in the order of the

seek and rotational latencies, for the possible arrival of

a new request from the same application. The purpose

of this wait is to allow a possible next sequential syn-

chronous request to be waited for and sent to the disk as it

arrives. Though apparently counterintuitive, on rotational

devices this wait usually results in a boost of the disk

throughput [4] with sequential and synchronous applica-

tions. In this respect, note that most mainstream applica-

tions issue synchronous requests. As shown in [1], disk

idling is instrumental also in preserving service guaran-

tees with synchronous requests. On flash-based devices,
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the throughput with random I/O is high enough to make

idling detrimental at a first glance. But most operating

systems perform readahead, which makes idling effective

also on these devices.

3.5 Preserving fairness with random re-

quests

BFQ imposes a time constraint on disk usage: once ob-

tained access to the disk, the application under service

must finish either its budget or its backlog within Tmax

time units (Tmax is the maximum time slice defined in

Subsec. 3.3), otherwise a budget timeout fires, and the ap-

plication is deactivated.

This falling back to time fairness prevents random ap-

plications from holding the disk for a long time and sub-

stantially decreasing the throughput. To further limit the

extent at which random applications may decrease the

throughput, on a budget timeout BFQ also (over)charges

the just deactivated application an entire budget even if it

has used only part of it. This causes B-WF2Q+ to assign

a higher finish time to the next budget of the application,

and ultimately reduces the frequency at which applica-

tions incurring budget timeouts can access the disk. On

the other hand, also sequential applications may run into

a budget timeout. In Subsec. 4.4 we propose a refinement

of the budget-overcharging strategy for this case, which

allows both a higher aggregate throughput and a lower la-

tency to be achieved.

4 Proposed heuristics

In addition to low responsiveness on loaded disks, in our

experiments with BFQ we have also found the following

problems: slowness in increasing budgets if many disk-

bound applications are started at the same time, incorrect

estimation of the disk peak rate, excessive reduction of the

disk utilization for applications that consume their bud-

gets too slowly or that are random only for short time in-

tervals, and tendency of disk writes to starve reads. The

heuristics and the changes reported in the following sub-

sections address these problems. Each heuristic is based

on one or more static parameters, which we have tuned

manually. According to our experiments, and to the feed-

back from BFQ+ users, it seems unlikely that an admin-

istrator would have to further tune these parameters to fit

the system at hand.

In some of the following subsections we use the phrase

“detected as random”. In this respect, BFQ computes the

average distance between the requests of an application

using a low-pass filter, and deems the application random

if this distance is above a given threshold (currently 8192
sectors).

4.1 Low latency for interactive applications

A system is responsive if it starts applications quickly

and performs the tasks requested by interactive applica-

tions just as quickly. This fact motivates the first step of

the event-driven heuristic presented in this subsection and

called just low-latency heuristic hereafter: the weight of

any newly-created application is raised to let the appli-

cation be loaded quickly. The weight of the application

is then linearly decreased while the application receives

service.

If the application is interactive, then it will block soon

and wait for user input. After a while, the user may then

trigger new operations after which the application stops

again, and so on. Accordingly, as shown below, the low-

latency heuristic raises again the weight of an application

in case the application issues new requests after being idle

for a sufficiently long (configurable) time.

In the rest of this subsection we describe the low-

latency heuristic in detail and discuss its main drawback:

the low-latency heuristic achieves responsiveness at the

expense of fairness and latency of non-interactive appli-

cations (as, e.g., soft real-time applications). Trading

fairness or latency of soft real-time applications for re-

sponsiveness may be pointless in many systems, such as

most servers. In this respect, under BFQ+ the low-latency

heuristic can be dynamically enabled/disabled through a

low latency parameter.

When a new application is created, its original weight

is immediately multiplied by a weight-raising coefficient

Crais. This lets the application get a higher fraction of

the disk throughput, in a time period in which most of

its requests concern the reading of the needed portions of

executables and libraries. The initial raising of the weight

is shown in the topmost graph in Fig. 2, assuming that the

application is created at time t0 and that its original weight

is w. The graph also shows the subsequent variation of
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Figure 2: Weight raising for an application created at time t0,

become idle at time t5 and again backlogged at time t6; the ap-

plication is served only during [t1, t2], [t3, t5] and [t7, t8].

the weight, which is described below. The bottommost

graph shows instead the amount of service received by

the application (do not consider the graph in the middle

for a moment).

If a new application keeps issuing requests after its start

up is accomplished, then preserving a high weight would

of course provide no further benefit in terms of start-up

time. Unfortunately, a disk scheduler does not receive

any notification about the completion of the loading of

an application. To address this issue, BFQ+ decreases the

weight of an application linearly while the application re-

ceives service, until the weight of the application becomes

equal to its original value. This guarantees that the weight

of a disk-bound application drops back smoothly to its

original value.

To compute the slope at which its weight is decreased,

an application is also associated with a weight-raising

budget, set to an initial value Brais when the application

is created. As shown in the middle graph in Fig. 2, while

an application enjoying weight raising is served (intervals

[t1, t2] and [t3, t5]), this special budget is decremented by

the amount of service received by the application, until it

reaches 0 (time t4). Also the weight of the application is

linearly decreased as a function of the service received,

but with such a slope that it becomes again equal to its

original value exactly when the weight-raising budget is

exhausted (time t4). In formulas, for each sector served,

the weight is decremented by Crais−1

Brais

w, where w was the

original value of the weight.

After the weight-raising budget is exhausted, the

weight of the application remains unchanged ([t4, t5]).
But, if the application becomes backlogged after be-

ing idle for a configurable minimum idle period Tidle

([t5, t6]), then the weight of the application is again mul-

tiplied by Crais and the application is assigned again

a weight-raising budget equal to Brais (time t6). The

weight and the weight-raising budget of the application

are then again decremented while the application receives

service ([t6, t8]), as in the case of a newly-created appli-

cation.

As already said, in [1] it is shown that disk idling is

instrumental in preserving service guarantees in the pres-

ence of deceptive idleness. Accordingly, to make sure

that the applications whose weight is being raised do en-

joy a low latency even if they perform random I/O, BFQ+

does not disable disk idling for these applications, what-

ever their request patterns are. There is however a time

constraint, whose purpose is, in contrast, to prevent ran-

dom applications from keeping a high weight and hence

harming the disk throughput for too long. An application

must consume its weight-raising budget within a config-

urable maximum raising time Trais from when its weight

is raised. If this time elapses, the weight-raising budget is

set at zero and the weight of the application is reset to its

original value.

After some tuning, we set the above parameters to the

minimum values sufficient to achieve a very low start-

up time even for as large applications as the ones in

the OpenOffice suite: Crais = 10, Brais = 24 MB,

Trais = 6 sec, Tidle = 2 sec. We are also investigating

ways for adjusting all or part of these parameters automat-

ically.

Raising the weight of interactive applications is a

straightforward solution to reduce their latency with any

weight-based scheduler. The crucial point is what the con-

sequences on non-interactive long-lived applications are.

In fact, the latter do not benefit from any weight raising

and are therefore penalized if other applications can get

more throughput than their fair share.

The user of a desktop may be willing to tolerate a tem-
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porary drop of throughput for long-lived best-effort appli-

cations, as file download or sharing, in return of a def-

initely higher system responsiveness. In contrast, few

users would be happy if their long-lived soft real-time ap-

plications, as, e.g., audio players, suffered from percepti-

ble quality degradation. Hence only a reasonable increase

in latency can be accepted for these applications. Fortu-

nately, the service properties of BFQ+ come into play ex-

actly in this respect: the effectiveness of BFQ+ in reduc-

ing the latencies of soft real-time applications balances

the tendency of the heuristic to increase the same laten-

cies. We investigated this important point in our experi-

ments, and discovered that, with the above values of Crais

and Brais, non-interactive time-sensitive applications—

as, e.g., video players—are still guaranteed latencies com-

parable to the ones they enjoy under CFQ (also thanks to

the smaller initial budget now assigned to applications,

Subsec. 4.3).

4.2 A new peak rate estimator

As showed in Subsec. 3.3, the maximum budget Bmax

that BFQ/BFQ+ can assign to an application is equal to

the number of sectors that can be read, at the estimated

peak rate, during Tmax. In formulas, if we denote as

Rest the estimated peak rate, then Bmax = Tmax ∗ Rest.

Hence, the higher Rest is with respect to the actual disk

peak rate, the higher is the probability that applications

incur budget timeouts unjustly (Subsec. 3.5). Besides, a

too high value of Bmax degrades service properties un-

necessarily (Subsec. 3.1).

The peak rate estimator is executed each time the appli-

cation under service is deactivated after being served for

at least 20 ms. The reason for not executing the estimator

after shorter time periods is filtering out short-term spikes

that may perturb the measure. The first step performed by

the estimator in BFQ is computing the disk rate during the

service of the just deactivated application. This quantity,

which we can denote as Rmeas, is computed by dividing

the number of sectors transferred, by the time for which

the application has been active. After that, Rmeas is com-

pared with Rest. If Rest < Rmeas, then Rest ← Rmeas.

Unfortunately, our experiments with heterogeneous

disks showed that this estimator is not robust. First, be-

cause of Zone Bit Recording (ZBR), sectors are read at

higher rates in the outer zones of a rotational disk. For ex-

ample, depending on the zone, the peak rate of the MAX-

TOR STM332061 in Table 1 ranges from 55 to about 90
MB/s. Since the estimator stores in Rest the maximum

rate observed, ZBR may easily let the estimator converge

to a value that is appropriate only for a small part of the

disk. Second, Rest may jump (and remain equal) even to

a much higher value than the maximum disk peak rate,

because of an important, and difficult to predict, source of

spikes: hits in the disk-drive cache, which may let sectors

be transferred in practice at bus rate.

To smooth the spikes caused by the disk-drive cache

and try to converge to the actual average peak rate over the

disk surface, we have changed the estimator as follows.

First, now Rest may be updated also if the just-deactivated

application, despite not being detected as random, has not

been able to consume all of its budget within the maximum

time slice Tmax. This fact is an indication that Bmax is

too large. Since Bmax = Tmax ∗ Rest, Rest is probably

too large as well and should be reduced.

Second, to filter the spikes in Rmeas, a discrete low-

pass filter is now used to update Rest instead of just keep-

ing the highest rate sampled. The rationale is that the aver-

age peak rate of a disk is a relatively stable quantity, hence

a low-pass filter should converge more or less quickly to

the right value. The new estimator is then:

i f ( a p p l i c s e r v i c e t i m e >= 20 ms )

i f ( R e s t < R meas or

( not a p p l i c i s r a n d o m and not

b u d g e t e x h a u s t e d ) )

R e s t = ( 7 / 8 ) ∗ R e s t + ( 1 / 8 ) ∗ R meas ;

The 7/8 value for α, obtained after some tuning, did al-

low the estimator to effectively smooth oscillations and

converge to the actual peak rate with all the disks in our

experiments.

4.3 Adjusting budgets for high throughput

As already said, BFQ uses a feedback-loop algorithm to

compute application budgets. This algorithm is basically

a set of three rules, one for each of the possible reasons

why an application is deactivated. In our experiments on

aggregate throughput, these rules turned out to be quite

slow to converge to large budgets with demanding work-

loads, as, e.g., if many applications switch to a sequential,

disk-bound request pattern after being non-disk-bound for

a while. On the opposite side, BFQ assigns the maximum
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possible budget Bmax to a just-created application. This

allows a high throughput to be achieved immediately if

the application is sequential and disk-bound. But it also

increases the worst-case latency experienced by the first

requests issued by the application (Subsec. 3.3), which

is detrimental for an interactive or soft-real time applica-

tion. To tackle these throughput and latency problems, on

one hand we changed the initial budget value to Bmax/2.

On the other hand, we re-tuned the rules, adopting a mul-

tiplicative increase/linear decrease scheme. This scheme

trades latency for throughput more than before, and tends

to assign high budgets quickly to an application that is or

becomes disk-bound. The description of both the new and

the original rules follows.

No more backlog. In this case, the budget was larger

than the number of sectors requested by the application,

hence to reduce latency the old rule was simply to set the

next budget to the number of sectors actually consumed

by the application. In this respect, suppose that some of

the requests issued by the application are still outstanding,

i.e., dispatched to the disk device but not yet completed.

If (part of) these requests are also synchronous, then the

application may have not yet issued its next request just

because it is still waiting for their completion. The new

rule considers also this sub-case, where the actual needs

of the application are still unknown. In particular: if there

are still outstanding requests, the new rule does not pro-

vide for the budget to be decreased, on the contrary the

budget is doubled proactively, in the hope that: 1) a larger

value will fit the actual needs of the application, and 2)

the application is sequential and a higher throughput will

be achieved. If instead there is no outstanding request,

the budget is decreased linearly, by a small fraction of the

maximum budget Bmax (currently 1/8). This is the only

case where the budget is decreased.

Budget timeout. In this case, increasing the budget

would provide the following benefits: 1) it would give

the chance to boost the throughput if the application is

basically sequential, even if the application has not suc-

ceeded in using the disk at full speed (because, e.g., it

has performed I/O on a zone of the disk slower than the

estimated average peak rate), 2) if this is a random ap-

plication, increasing its budget would help serving it less

frequently, as random applications are also (over)charged

the full budget on a budget timeout. The original rule did

set the budget to the maximum value Bmax, to let all ap-

plications experiencing budget timeouts receive the same

share of the disk time. In our experiments we verified that

this sudden jump to Bmax did not provide sensible practi-

cal benefits, rather it increased the latency of applications

performing sporadic and short I/O. The new, better per-

forming rule is to only double the budget.

Budget exhaustion. The application has still back-

log, as otherwise it would have fallen into the no-more-

backlog case. Moreover, the application did not cause ei-

ther a disk-idling timeout or a budget timeout. As a con-

clusion, it is sequential and disk-bound: the best candi-

date to boost the disk throughput if assigned a large bud-

get. The original rule incremented the budget by a fixed

quantity, whereas the new rule is more aggressive, and

multiplies the budget by four.

4.4 More fairness towards temporarily ran-

dom and slightly slow applications

To describe the following set of simple heuristics, we need

first to add a detail: when the active application is deacti-

vated for whichever reason, BFQ, and hence BFQ+, also

control whether it has been too slow, i.e., it has consumed

its last-assigned budget at such a low rate that it would

have been impossible to consume all of it within the max-

imum time slice Tmax (Subsec. 3.5). In this case, in BFQ,

the application is always (over)charged the full budget to

reduce its disk utilization, exactly as it happens with ran-

dom applications (Subsec. 3.5).

We found the two situations below, occurring fre-

quently, in which this behavior causes throughput loss,

increased latencies or even both. We also report a third

situation, related to temporarily random applications, that

gives rise to similar problems. For each situation, we re-

port the new behavior of BFQ+ (the constants are again

the result of our tuning with different disks).

1. If too little time has elapsed since a sequential appli-

cation has started doing I/O, then the positive effect

on the throughput of its sequential accesses may not

have yet prevailed on the throughput loss occurred

while moving the disk head onto the first sector re-

quested by the application. For this reason, if a slow

application is deactivated after receiving very little

service (at most 1/8 of the maximum budget), it is

not charged the full budget.
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2. Due to ZBR, an application may be deemed slow

when it is performing I/O on the slowest zones of the

disk. However, unless the application is really too

slow, not reducing its disk utilization is more prof-

itable in terms of disk throughput than the opposite.

For this reason an application is never charged the

full budget if it has consumed at least a significant

part of it (2/3).

3. We have seen that some applications generate re-

ally few and small, yet very far, random requests

at the beginning of a new disk-bound phase. The

large distance between these initial requests causes

the average distance (computed using a low-pass fil-

ter as stated at the beginning of this section) to re-

main high for a non-negligible time, even if then the

application issues only sequential requests. Hence,

for a while, the application is unavoidably detected

as random. As a consequence, before the following

modification, the disk-idling timeout was set to very

low values if the application issued synchronous re-

quests (Subsec. 3.4), and this often caused loss of

disk throughput and increased latency. Now the disk-

idling timeout for a random application can be set to

a very low value only after the application has con-

sumed at least a minimum fraction (1/8) of the max-

imum budget Bmax.

4.5 Write throttling

One of the sources of high I/O latencies and low through-

put under Linux, and probably under any operating sys-

tem, is the tendency of write requests to starve read ones.

The reason is the following. Disk devices usually sig-

nal the completion of write requests just after receiving

them. In fact, they store these requests in the internal

cache, and then silently flush them to the actual medium.

This usually causes possible subsequent read requests to

starve. The problem is further exacerbated by the fact that,

on several file systems, some read operations may trigger

write requests as well (e.g., access-time updating).

To keep low the ratio between the number of write re-

quests and the number of read requests served, we just

added a write (over)charge coefficient: for each sector

written, the budget of the active application is decre-

mented by this coefficient instead of one. As shown by

our experimental results, a coefficient equal to ten proved

effective in guaranteeing high throughput and low latency.

5 Related work

We can broadly group the schedulers aimed at provid-

ing a predictable disk service as follows: 1) real-time

schedulers [5, 6, 7, 8, 9]; 2) proportional-share timestamp-

based schedulers [10, 11, 12, 13]; and 3) proportional-

share round-robin schedulers [14, 15]. In the next subsec-

tion we focus on the first two classes of schedulers and

discuss an important issue related them. Then, in Sub-

sec. 5.2, we provide more details on round-robin sched-

ulers. Here we note that most of the schedulers in any of

the three classes combine their main policies with some

effective algorithm to achieve a high disk throughput. Ex-

amples of the latter algorithms are SCAN (Elevator), C-

SCAN, LOOK, C-LOOK [16] and Anticipatory [4]. It

is important to highlight that, depending on the applica-

tion, some of these throughput-boosting algorithms can

achieve, on their own, latencies comparable or lower than

a scheduler aimed at providing a predictable service. Un-

fortunately, this is not the case for interactive applications,

as a throughput-boosting algorithm may not serve them

for a long time if, e.g., some sequential access is being

performed in parallel. In contrast, in [17] Anticipatory is

shown, for example, to provide low latencies with a WEB-

server workload. For such a workload, the authors also

show that Table-Building Bus Driver, a scheduler aimed

at minimizing request response times, achieves a little less

than half the latencies of a fine-tuned scheduler as CFQ.

This is about the same result achieved by BFQ for this

type of workloads according to [1].

Argon [18], Cello [19], APEX [20] and PRISM [21]

are frameworks for providing QoS guarantees. It is worth

mentioning also Real-Time Database Systems (RTDBS),

which are architectures for performing database opera-

tions with real-time constraints [22]. As for the Argon

storage server, its goal is to provide each service with at

least a configured fraction of the throughput it achieves

when it has the server to itself, within its share of the

server. This result is achieved with such mechanisms

as request prefetching and cache partitioning. The other

above-mentioned architectures provide instead for the use

of one or more underlying disk schedulers. Hence their
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overall service guarantees depend on the properties of the

adopted schedulers. In this respect, as already said, in

the next subsection we discuss an important issue related

to existing real-time and proportional-share timestamp-

based schedulers. Finally, consider that any scheduler

may have to interact with the internal queueing performed

by a modern disk drive. The issues related to disk-drive

internal queueing are described in Subsection 5.3.

5.1 Real-time and timestamp-based

proportional-share schedulers

Unfortunately, real-time and timestamp-based

proportional-share research schedulers may suffer

from low throughput and degradation of the service

guarantees with mainstream applications, as theoretically

and experimentally shown in [1]. In fact, the service

guarantees of these schedulers do hold if the arrival time

of every request of any application is independent of the

completion time of the previous request issued by the

same application. The problem is that this property just

does not hold for most applications on a real system. In

[1] it is also shown that the original properties of some of

these schedulers can be partially or completely recovered

with some simple extensions. Since these issues are out

of the scope of this document, we do not repeat here the

detailed discussion and the experiments reported in [1].

5.2 Round-robin schedulers

CFQ is a production-quality round-robin disk scheduler,

fine-tuned over the years and currently under active de-

velopment. As such, it is probably one of the best-

performing schedulers in its class. For this reason, we

use it as a reference to describe the main properties of

round-robin schedulers. BFQ owes to CFQ the idea of

exclusively serving each application for a while. But, dif-

ferently from BFQ, CFQ grants disk access to each appli-

cation for a fixed time slice (as BFQ basically does only

for random applications, Subsec. 3.5). Slices are sched-

uled in a round-robin fashion. Unfortunately, disk-time

fairness may suffer from unfairness in throughput distri-

bution. Suppose that two applications both issue, e.g., se-

quential requests, but for different zones of the disk. Due

to ZBR, during the same time slice an application may

have a higher/lower number of sectors served than the

other. Another important fact is that under a round-robin

scheduler any application may experience, independently

from its weight, O(N) worst-case delay in request com-

pletion time with respect to an ideal perfectly fair system.

This delay is much higher than the one of BFQ (shown in

detail in Subsec. 3.1). Finally, a low latency tunable has

been recently added to CFQ: when enabled, CFQ tries to

reduce the latency of interactive applications in a similar

vein as BFQ.

5.3 Disk-drive internal queueing

If multiple disk-bound applications are competing for the

disk, but are issuing only synchronous requests, and if the

operating-system disk scheduler performs disk idling for

synchronous requests, then a new request is dispatched to

the disk only after the previous one has been completed.

As a result, a disk-drive internal scheduler cannot do its

job (fetch multiple requests and reorder them). Both CFQ

and BFQ+ address this issue by disabling disk idling alto-

gether when internal queueing is enabled.

As also shown by our experimental results, NCQ pro-

vides little or no advantage with all but purely ran-

dom workloads, for which it actually achieves a definite

throughput boost. On the other hand, our results show that

the price paid for this benefit is loss of throughput distri-

bution and latency guarantees, with any of the schedulers

considered, at such an extent to make the system unus-

able. The causes of this problem are two-fold. The first

is just that, once prefetched a request, an internal sched-

uler may postpone the service of the request as long as

it deems serving other requests more appropriate to boost

the throughput. The second, more subtle cause has been

pointed out in [1], and regards a high-weight application

issuing synchronous requests. Such an application, say

A, may have at most one pending request at a time, as it

can issue the next request only after the previous one has

been completed (we rule out readahead, which does not

change the essence of this problem). Hence the backlog

of A empties each time its only pending request is dis-

patched. If the disk is not idled and other applications are

backlogged, any scheduler would of course serve another

application each time the application A becomes idle. As

a consequence, the application A would not obtain the

high share of the disk throughput (or disk time) it should

receive.
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6 The benchmark suite

In this section we describe the purpose and the motiva-

tions of the suite of benchmarks through which we mea-

sure the performance of the schedulers in the next section.

The reader not interested into these aspects may skip this

section and move directly to the experimental results in

the next section.

We wanted to be able to assess the performance of a

scheduler in terms of relevant figures of merit for real-

world tasks. To this purpose, we focused on the following

performance indexes and, for each quantity, we consider

the following worst-case scenarios.

Aggregate disk throughput As general scenarios for

measuring disk throughput we can consider the read-

ing and the writing of multiple files at the same

time, with each file accessed sequentially or ran-

domly (i.e., with read/write requests scattered at ran-

dom positions within each file). The resulting set of

workloads represents both a typical disk I/O micro-

benchmark, and a worst-case (heavy-load) scenario

for file download, upload and sharing. Hereafter,

we refer to workloads like these when we say heavy

workloads. Given the obvious importance of disk

throughput as a figure of merit, we measure it also

in all of the next scenarios.

Responsiveness We focus primarily on the latency ex-

perienced by a user in one of the most common

actions she/he performs: starting applications (in-

voking commands). As a worst-case scenario, we

consider the start-up time of applications—i.e., how

long it takes for applications to start doing their job

from when they are launched—with cold caches and

in presence of additional heavy workloads. Accord-

ing to how the low-latency heuristic described in

Subsec. 4.1 works, under BFQ this quantity is in gen-

eral a measure of the worst-case latency experienced

by an interactive application every time it performs

some I/O.

Latency of soft real-time applications As already dis-

cussed, the litmus test for the weight-raising heuris-

tic added to BFQ is how it degrades the quality of

the service provided to non-interactive applications.

And soft real-time applications are clearly among the

most sensitive ones to the degradation of the guaran-

tees. A video player is an important representative of

soft real-time applications for desktop or handheld

systems. To assess the quality of the service it expe-

riences, we can count the number of frames dropped

during the playback of a movie clip, when, in par-

allel, a command is repeatedly invoked with cold

caches, and in presence of additional heavy work-

loads.

Throughput guaranteed to code-development appli-

cations Some of the fundamental applications in this

category are compilers and revision control systems.

With respect to these applications, a key figure of

merit for a programmer is most certainly how fast

a compilation or checkout/merge from a repository

advance in presence of other heavy workloads.

Fairness As for fairness, extensive experiments have

been carried out in [1], and we verified that those

results are preserved also in this new version. Hence

for brevity in the next section we do not provide ei-

ther these results or details about the fairness bench-

mark contained in the suite.

Database workloads As shown in detail in [1], with

these workloads any scheduler achieves a disk

throughput equal to a negligible fraction of the peak

rate, and other solutions, as, e.g., caching, should be

adopted for better performance. We do not repeat

these results in the next section and, as of now, the

suite doe not contain any database benchmark.

We analyzed several benchmark tools to find some suit-

able to evaluate the first four figures of merit. Unfor-

tunately, we found appropriate tools only for measuring

aggregate disk throughput. Many of these tools are also

aimed at measuring single-request latency under work-

loads made of sequential or random requests issued back-

to-back (greedy readers/writers). These patterns match

only partially the ones generated by soft real-time or inter-

active applications. The former applications usually issue

small batches of requests spaced by a short, often fluc-

tuating, time period. The latter may instead generate a

mix of sequential and random synchronous requests, is-

sued almost back-to-back, i.e., spaced by a short but vari-

able idle time (as we also saw in our traces). As a further
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consequence of these discrepancies, the workloads gener-

ated by these benchmark tools lack the heterogeneity of

request patterns that can be found in a real system. In

the end, as we verified experimentally, the actual latency

experienced by interactive and soft real-time applications

may differ with respect to the one that could be inferred

from the statistics reported by these tools.

In view of this situation, we implemented an ad hoc

benchmark suite that covers the above scenarios and col-

lects the desired throughput and latency measures. Espe-

cially, every benchmark mimics, or is actually made of,

real-world I/O tasks. The suite is publicly available [2].

Each of the benchmarks mentioned in this section is de-

scribed in detail in the next section (apart from the fairness

benchmark), together with our results. New benchmarks

may however have been added to the suite after we have

written this document.

7 Experimental results

In this section we show the results of our performance

comparison among BFQ, BFQ+, CFQ and FIFO on rota-

tional disks, with and without NCQ. We consider FIFO

only in our experiments with NCQ, because FIFO is com-

monly considered the best option to get a high through-

put with NCQ. Under Linux the FIFO discipline is im-

plemented by the NOOP scheduler. In the next sub-

section we show the software and hardware configura-

tions on which the experiments have been run, and dis-

cuss the choice of the subset of our results that we re-

port in this document. The experiments themselves are

then reported in the following subsections. These exper-

iments concern aggregate throughput, responsiveness, la-

tency for soft real-time applications and throughput guar-

anteed to code-development applications. Especially, the

latency guaranteed to soft real-time applications is mea-

sured through a video-playing benchmark. For each ex-

periment we highlight which heuristics contributed to the

good performance of BFQ+. To this purpose, we use

the following abbreviations for each of the heuristics re-

ported in Subsecs. 4.1–4.5: H-low-latency, H-peak-rate,

H-throughput, H-fairness and H-write-throt.

We performed the experiments reported in the follow-

ing subsections using the benchmark suite introduced in

the previous section. We describe each benchmark in de-

tail at the beginning of each subsection. All the results and

statistics omitted in this document can be found in [2]. In

addition, the benchmark suite contains the general script

that we used for executing the experiments reported in this

document (all these experiments can then be repeated eas-

ily).

7.1 Test bed and selected results

To verify the robustness of BFQ+ across different hard-

ware and software configurations, we ran the benchmark

suite under Linux kernel releases ranging from 2.6.32 to

3.1, and on the three systems with a single rotational disk

shown in Table 1. On each system, the suite was run

twice: once with a standard configuration, i.e., with all

the default services and background processes running,

with the purpose of getting results close to the actual user

experience; and once with an essential configuration, i.e.,

after removing all background processes, with the goal of

removing as much as possible any source of perturbations

not related to the benchmarks.

For both schedulers, we used the default values of their

configuration parameters. In particular, for BFQ+ and

BFQ, the maximum time slice Tmax was equal to 125
ms (Subsec. 3.3). For CFQ, the time slice was equal to

100 ms and low latency was enabled, whereas, for BFQ+

the benchmarks have been run with low latency both en-

abled and disabled (Subsec. 4.1). Unless otherwise stated,

for BFQ+ we report our results with low latency enabled,

and highlight interesting differences with the other case

only when relevant.

The relative performance of BFQ+ with respect to BFQ

and CFQ was essentially the same under any of the ker-

nels, on any of the systems and independently of whether

a standard or essential configuration was used. Besides,

for each system and kernel release we collected a rela-

tively large number of statistics, hence, for brevity, for

the experiments without NCQ and apart from the video-

playing benchmark, we report our results only for the

2.6.34 kernel on the third system. We chose this sys-

tem because its disk speed and software configuration are

closer to an average desktop system with respect to the

other two. As for video playing, we report our results on

the first system instead. Since this system is the one with

the slowest disk, it allows us to show more accurately the

performance degradation of BFQ+ with respect to BFQ
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Disk, size, read peak rate NCQ-capable File System CPU Distribution

MAXTOR 6L080L0, 82 GB, 55 MB/s NO ext3 Athlon 64 3200+ Slackware 13.0

MAXTOR 7L250S0, 250 GB, 61 MB/s YES ext3 Pentium 4 3.2GHz Ubuntu 9.04

MAXTOR STM332061, 320 GB, 89 MB/s NO ext4 Athlon 64 3200+ Ubuntu 10.04

Table 1: Hardware and software configurations used in the experiments.

and CFQ.

Regarding NCQ, as shown in Table 1 we had only one

system with this feature, and we report here our results un-

der the 2.6.34 kernel on that system. As previously stated,

with NCQ we ran the benchmarks also with NOOP. In

the next subsection we show the actual throughput gains

achieved with NCQ, while in Subsec. 7.3 we show the un-

bearable increase of the latency of interactive applications

NCQ causes on a loaded disk. The latency becomes so

high to make the system unusable. Accordingly, playing

a video is of course just unfeasible. For this reason, we re-

port our results only without NCQ for the video-playback

benchmark.

As for the statistics, each benchmark is run ten times

and, for each quantity of interest, several aggregated

statistics are computed. Especially, for each run and for

each quantity, the following values are computed over the

samples taken during the run: minimum, maximum, aver-

age, standard deviation and 95% confidence interval. The

same five statistics are then computed across the averages

obtained from each run. We did not find any relevant out-

lier, hence, for brevity and ease of presentation, we report

here only averages across multiple runs (i.e., averages of

the averages computed in each run).

Finally, hereafter we call just traces the information

we collected by tracing block-level events (disk request

creation, enqueueing, dequeueing, completion and so on)

through the Linux ftrace facility during experiments.

7.2 Aggregate Throughput

In this benchmark we measure the aggregate disk through-

put under four different workloads. Each of these work-

loads is generated by a given set of file readers or writ-

ers starting and executing in parallel, with each file read-

er/writer exclusively reading/writing from/to a private file.

File reads/writes are synchronous/asynchronous and is-

sued back-to-back (greedily). These are the four sets, and

the abbreviations we will use to refer to them in the rest

of this section: ten sequential readers, 10r-seq; ten ran-

dom readers, 10r-rand; five sequential readers plus five

sequential writers, 5r5w-seq; five random readers plus

five random writers, 5r5w-rand. We denote as sequen-

tial, or random, a reader/writer that greedily reads/writes

the file sequentially or at random positions. Each file to

read is 5 GB long, or grows up to that size in case of writ-

ers.

In the more sterile environment used in [1], each file

was stored in a distinct disk partition. In this benchmark

we put instead all the files in the same partition, in order

to get a more realistic scenario. With this configuration,

the used filesystems cannot guarantee each file to lie in

a single, distinct zone of the disk. Hence even sequential

readers may issue a certain fraction of random requests. In

addition to the high number of processes that are started

and executed in parallel, this lets the workloads in this

benchmark be quite demanding for BFQ+ and its budget-

assignment rules.

We ran a long and a short version of the benchmark,

differing only in terms of duration: respectively, two min-

utes and 15 seconds. The purpose of the first version is

to assess the steady-state aggregate throughput achievable

with each scheduler (after removing the samples taken

during the first 20 seconds), whereas the second version

highlights how quickly each scheduler reaches a high

throughput when many applications are started in paral-

lel.

7.2.1 Results without NCQ

As shown in Fig. 3, in the long benchmark both BFQ+

and BFQ achieve an about 24% higher throughput than

CFQ with sequential workloads (10r-seq and 5r5w-seq),

and are close to the disk peak rate with only sequen-

tial readers. As we verified through traces, this good re-

sult of BFQ+ and BFQ is mainly due to the fact that the
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budget-assignment rules let the budgets grow to the max-

imum allowed value Bmax (BFQ actually assigns Bmax

even to the initial budgets of the readers and the writers,

Subsec. 4.3). This enables BFQ+ and BFQ to profit by

the sequential pattern of each reader for a relatively long

time before switching to the next one. In contrast, CFQ

switches between processes slightly more frequently, also

because its time slice is slightly shorter than the one of

BFQ+/BFQ (100 ms against 125). Increasing the time

slice would have most certainly improved the perfor-

mance of CFQ in terms of throughput, but it would have

further worsened its latency results (shown in the follow-

ing subsections). Finally, BFQ+ achieves a slightly higher

throughput than BFQ with 5r5w-seq, mainly because of

H-write-throt and the fact that and sequential writes are

slower than sequential reads.

As for random workloads, with any of the schedulers

the disk throughput unavoidably falls down to a negligi-

ble fraction of the peak rate. The performance of BFQ+

with 10r-rand is however comparable to CFQ, because

BFQ+ falls back to a time-slice scheme in case of ran-

dom workloads (Subsec. 3.5). The loss of throughput for

5r5w-rand is instead mainly due to the fact that CFQ hap-

pens to privilege writes more than BFQ+ for that work-

load. And random writes yield a slightly higher through-

put than random reads, as could be seen in our complete

results. Finally, BFQ achieves a higher throughput than

the other two schedulers with both workloads, because it

does not throttle writes at all (there is a small percentage

of writes, due to metadata updates, also with 10r-rand).

Unfortunately, the little advantage enjoyed in this case is

paid with a more important performance degradation in

any of the following benchmarks.

As for the short benchmark, BFQ achieves the same

aggregate throughput as in Fig. 3 immediately after read-

ers/writers are started. In fact, BFQ assigns them the max-

imum possible budget Bmax from the beginning. Though

assigning only Bmax/2 as initial budget, BFQ+ reaches

however the maximum budget, and hence the highest ag-

gregate throughput, within 1 − 2 seconds, thanks to the

effectiveness of H-throughput and H-fairness. CFQ is a

little bit slower, and its average aggregate throughput over

the first 15 seconds is 59.6 MB/s.
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Figure 3: Aggregate throughput achieved, in the long bench-

mark, by BFQ+, BFQ and CFQ on the third system (without

NCQ).

7.2.2 Results with NCQ

The results for the long benchmark with NCQ enabled (on

the second system, Table 1) are shown in Fig. 4. BFQ+,

BFQ and CFQ have a similar performance with the se-

quential workloads. This is due to the fact that these

schedulers disable disk idling with NCQ, and hence del-

egate de facto most of the scheduling decisions to it. In

more detail, the performance of CFQ is moderately worse

than BFQ+ and BFQ. As can be verified through traces, it

happens because CFQ switches slightly more frequently

between processes. This fact causes CFQ to suffer from a

more pronounced throughput loss with the random work-

loads.

As for NOOP (the Linux FIFO disk scheduler), it

achieves worse performance than BFQ+ and CFQ with

10r-seq because it passes requests to the disk device in

the same order as it receives them, thus the disk device

is more likely to be fed with requests from different pro-

cesses, and hence driven to perform more seeks. The per-

formance of NOOP improves with 5r5w-seq, because of

the presence of the write requests. In this respect, as can

be seen in our complete results, which show also write

statistics, NCQ provides a higher performance gain with

writes. And—differently from BFQ+, BFQ and CFQ—

NOOP does not relegate write requests to a separate sin-

gle queue that must share the disk throughput with mul-
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Figure 4: Aggregate throughput achieved, in the long bench-

mark, by BFQ+, BFQ, CFQ and NOOP (FIFO) on the second

system with NCQ.

tiple other queues (writes are system-wide and are all in-

serted in a single queue by BFQ+, BFQ and CFQ). Fi-

nally, NOOP provides a 50% performance boost with

5r5w-rand with respect to BFQ+, because NCQ is even

more effective with random write requests. The gist of

these results is however that, with NCQ, the service or-

der is actually almost completely out of the control of the

schedulers. For this reason the short-benchmark results

are quite pointless and for brevity we do not report them

here.

7.3 Responsiveness

We measure the start-up time of three common applica-

tions of increasing size while one of the four workloads

used in Subsec. 7.2 is being served. To get worst-case

start-up times we drop caches before invoking each ap-

plication. The applications are, in increasing size order:

bash, the Bourne Again shell, xterm, the standard termi-

nal emulator for the X Window System, and konsole, the

terminal emulator for the K Desktop Environment. These

applications allow their start-up time to be easily com-

puted. For bash, we just let it execute the exit built-in

command and measure the total execution time. For xterm

and konsole, we measure the time elapsed since their invo-

cation till when they contact the graphical server to have

their window rendered. For each run, the application at

hand is executed ten times, flushing the cache before each

invocation of the application, and with a one-second pause

between consecutive invocations. This is the benchmark

where the synergy of the heuristics reported in this docu-

ment can be best appreciated.

7.3.1 Results without NCQ

Fig. 5(a) shows the bash start-up times: under BFQ+ they

are up to eight-time lower than under CFQ and BFQ, and

quite close to the ones obtained invoking the application

on an idle disk. To see how these lower latencies are

paid in terms of aggregate throughput, we measured also

the latter quantity during the benchmark. As shown in

Fig. 5(b), for three out of four workloads, BFQ+ achieves

a higher throughput than CFQ too. This lower laten-

cy/higher throughput result is due to both H-low-latency,

and the more accurate scheduling policy of BFQ+ (shared

with BFQ). Especially, this policy allows BFQ+ to get

low latencies for small-size interactive applications even

while assigning high budgets to the readers. As a further

proof of this fact, consider that the bash start-up time un-

der BFQ+ with low latency disabled was already below

0.55 seconds with any of the workloads (full results in

[2]). As can be verified through the traces, without H-

fairness, BFQ+ could not have achieved such a good re-

sult. In fact, BFQ achieves a latency only slightly better

than CFQ (Fig. 5(a)) exactly because it lacks this heuris-

tic. The performance of BFQ is even worse than CFQ

with 5r5w-seq and 5r5w-rand, because BFQ also lacks

W-write-throt.

Considering again the throughput, the pattern generated

to load an application is usually a mix of sequential and

random requests. BFQ+ of course favors this pattern more

than CFQ and BFQ with respect to the requests issued by

the background workloads. This fact negatively affects

the throughput under BFQ+ in case of throughput-friendly

workloads as, e.g., 10r-seq. The throughput achieved by

BFQ+ is however still much higher than that achieved

by CFQ, because the percentage of disk time devoted to

bash is very low during the benchmark, about 0.20 sec-

onds against a one-second pause between invocations, and

because the budget-assignment rules of BFQ+ let the se-

quential readers get high budgets. As we are about to see,

things change when the size of the application increases.

Finally, BFQ always achieves a high throughput because
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Figure 5: bash start-up times and aggregate throughput during

the benchmark (third system without NCQ).

it devotes a small percentage of the disk time to bash, and

assigns high budgets to readers and writers.

For brevity we do not report our results with xterm, as

these results sit between the ones with bash and the ones

with konsole. Consider then konsole, the largest applica-

tion of the three. As shown in Fig. 6(a), the latency drop

is evident: up to nine times lower start-up time than with

CFQ and BFQ. With any workload, BFQ+ is again close

to the start-up time achievable on an idle disk. This op-

timal result is a consequence of the sum of the benefits

of the heuristics described in this document. In particu-

lar, adding H-peak-rate, H-throughput, H-fairness and H-

write-throt alone would let BFQ achieve a start-up time

around 20 seconds also with 10r-seq and 10r-rand. And

it is only thanks to the conjunction of these heuristics and

H-low-latency that BFQ+ succeeds in achieving the low

application start-up times reported in Fig. 6(a).
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Figure 6: konsole start-up times and aggregate throughput dur-

ing the benchmark (third system without NCQ).

This low latency is paid with a 20%/36% loss of ag-

gregate throughput with respect to CFQ/BFQ in case of

10r-seq, as can be seen in Fig. 6(b). It happens because

CFQ and BFQ of course favor less than BFQ+ the more-

random requests that must be served for loading konsole.

Differently from bash, with konsole a significant percent-

age of time is spent loading the application during the

benchmark. On the opposite end, from the full results

it could be seen that, though the konsole-loading pattern

is partially random, favoring it leads however to: 1) a

slightly higher throughput than favoring sequential writes,

and 2) a definitely higher throughput than favoring purely

random read or write requests. For this reason BFQ+
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bash start-up konsole start-up

range [sec] range [sec]

BFQ+ 0.27 - 0.32 10.7 - 196
BFQ 0.51 - 0.74 30.9 - 188
CFQ 1.05 - 7.44 14.7 - 2940

NOOP 6.19 - 10.8 1.55 - 408

Table 2: Ranges of start-up times achieved by BFQ+, BFQ,

CFQ and NOOP (FIFO) over the four workloads, on the second

system with NCQ enabled.

achieves a higher throughput than CFQ and BFQ with the

other three workloads.

7.3.2 Results with NCQ

With NCQ the results confirm the expected severe degra-

dation of the service guarantees. The variation of the

start-up times as a function of the different workloads is

so large that they are impossible to clearly represent on

charts with linear scale as the ones used so far. Hence we

summarize these results in Table 2. For each scheduler

and application we report the minimum and maximum

(average) start-up times achieved against the four work-

loads.

As can be seen, BFQ+ still achieves reasonable start-up

times for bash, whereas konsole is now unusable (xterm

is unusable too). The performance of BFQ+ and BFQ is

however better than that of CFQ and NOOP (FIFO), with

CFQ taking up to 49 minutes to start konsole. There is the

outlier of the 1.55 seconds taken by NOOP, precisely with

5r5w-seq, which we did not investigate further. In gen-

eral, whereas NOOP does not make any special effort to

provide low-latency guarantees, the other three schedulers

cannot really be blamed for this bad performance. NCQ

basically amplifies, in a non-linear way, the latency that

would be guaranteed by each of these schedulers without

it, because of the two problems discussed in Sec. 5. Fi-

nally, the results in terms of aggregate throughput match

the ones reported in Subsec. 7.2, hence we do not repeat

them.

7.4 Video playback

In this benchmark we count the total number of frames

dropped while: 1) a 30-second, medium-resolution, de-

manding movie clip is being played with the mplayer

video player, 2) the bash command is being invoked with

cold caches every 3 seconds (3 seconds is the upper bound

to the worst-case start-up time of bash with CFQ in this

benchmark), and 3) one of the workloads used in Sub-

sec. 7.2 is being served. bash starts to be repeatedly in-

voked only after 10 seconds since mplayer started, so as

to make sure that the latter is not taking advantage of any

weight raising. In contrast, because of its short start-up

time, each execution of bash enjoys the maximum weight

raising and hence causes the maximum possible perturba-

tion.

To show the consequences of the number of frames

dropped through a more clear quantity, we computed a

conservative estimate of the average frame-drop rate dur-

ing the last 20 seconds of the playback (the most per-

turbed ones), assuming a playback rate of 27 frames per

second. In this respect, it would have been even more

interesting to conduct the reverse analysis, i.e., given a

well-established frame-drop rate for a high-quality play-

back, find the most perturbing background workloads for

which that threshold is met. To perform such an analy-

sis, we should have taken many variables into account,

because the level of perturbation caused by a background

workload may depend on many parameters, such as num-

ber of readers, number of writers, size of the other ap-

plications started during the playback, and frequency at

which these applications are started. We do not consider

this more complex analysis for the moment.

Turning back to the actual benchmark we have run, as

already said in Subsec. 7.1, we report here our results on

the first system (without NCQ), as this system is the one

with the slowest disk. As shown in Fig. 7, the price paid

on this system for the low latency guaranteed by BFQ+

to interactive applications is a frame-drop rate not higher

than 1.6 times that of CFQ. Note that BFQ exhibits its

worse performance with 5r5w-seq and 5r5w-rand, mainly

because with these workloads it devotes a quite high per-

centage of the disk time to the write requests. On the con-

trary, thanks to H-write-throt, the relative performance of

BFQ+ with respect to CFQ does not get worse under these

workloads.
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Figure 7: Average frame-drop rate, while the bash application

is repeatedly invoked and one the four workloads is served.

7.5 Code-development applications

In this benchmark we measure the progress of three dif-

ferent code-development tasks (started with cold caches):

the compilation of the Linux kernel, the checkout of a

branch in a clone of the Linux git repository, and the

merge of two branches. One of the four workloads used

in Subsec. 7.2 is served in parallel with the task at hand.

Each of these tasks has an initial phase during which the

number of disk requests it issues is quite unpredictable

and may vary a lot across different runs (see the suite for

details [2]). Hence, we record the progress of these tasks

during two minutes since this phase is finished.

A significant part of the work done by the three tasks

is writing files, but writes are system-wide and hence end

up in a common flush queue in BFQ+, BFQ and CFQ. As

a consequence, none of these schedulers has the opportu-

nity to save the writes generated by these tasks from being

overwhelmed by the ones of the greedy writers. For this

reason, the 5r5w-seq and 5r5w-rand workloads cause the

three tasks to almost completely starve. We report here

only the results with the other two workloads, generated

only by readers.

As for kernel compilation, we verified through tracing

that really few read requests are issued. These requests

are quickly served with both BFQ+ and CFQ, whereas

the application spends most of the time either using the

CPU or waiting for its write requests to be handed over

to the virtual memory subsystem. In the end, most of

the (little) control of BFQ+ and CFQ over the progress

of a task like this is related to how the scheduler balances

writes with respect to the reads generated by the back-

ground workloads. And BFQ+ balances them more or

less like CFQ. Consequently, the progress of the compi-

lation is about the same with both schedulers, as shown

in Fig. 8(a). In contrast, since it lacks H-fairness, BFQ

delays the sporadic read requests issued during the com-

pilation more than BFQ+ and CFQ. This worsens its per-

formance. The results in terms of throughput are instead

virtually the same as the ones for 10r-seq and 10r-rand in

Fig. 5(b): BFQ+ and BFQ achieve again a higher through-

put than CFQ with 10r-seq.
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Figure 8: Kernel compilation progress, measured in number of

source files compiled during the benchmark.

As for checkout and merge, Fig. 9 groups together the

results for both tasks, reporting, for each task, the progress

against each workload. Differently from the kernel com-

pilation, BFQ+ and BFQ achieve better results than CFQ

with these two tasks. The main reason is that these tasks

are more read-intensive than a compilation. Especially,

they allow BFQ+ to take full advantage of H-fairness

and to definitely outperform BFQ. Regarding aggregate

throughput the results are again very close to the ones for

10r-seq and 10r-rand in Fig. 5(b).
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Figure 9: Progress of checkout and merge tasks, measured in

percentage of the task completed during the benchmark.

8 Conclusions

In this document we have described a set of simple heuris-

tics added to the original BFQ disk scheduler. The re-

sulting new scheduler is named BFQ-v1 in the patchsets

that introduce BFQ in the Linux kernel [2]. These heuris-

tics are aimed at improving responsiveness and robust-

ness across heterogeneous devices, as well as achieving

high throughput under demanding workloads. We have

validated the effectiveness of these heuristics by running,

on several heterogeneous systems with single rotational

disks, a benchmark suite that mimics real-world tasks.

The next step will be to tackle RAIDs and SSDs, and

to further investigate ways for preserving guarantees also

with NCQ.
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