
Evolution of the BFQ Storage-I/O Scheduler

Paolo Valente
Dipartimento di Fisica, Informatica e Matematica

Università di Modena e Reggio Emilia, Italy
paolo.valente@unimore.it

Arianna Avanzini
Dipartimento di Fisica, Informatica e Matematica

Università di Modena e Reggio Emilia, Italy
arianna.avanzini@unimore.it

Abstract—An accurate storage-I/O scheduler, named Budget
Fair Queueing (BFQ), was integrated with a special set of
heuristics a few years ago. The resulting, improved scheduler,
codenamed BFQ-v1, was able to guarantee a number of desirable
service properties, including a high responsiveness, to applications
and system services. In the intervening years, BFQ-v1 has become
relatively popular on desktop and handheld systems, and has
further evolved. But no official, comprehensive and concentrated
documentation has been provided about the improvements that
have followed each other. In this paper we fill this documentation
gap, by describing the current, last version of BFQ (v7r8). We also
show the performance of BFQ-v7r8 through some experimental
results, in terms of throughput and application responsiveness,
and on both an HDD and an SSD.

Keywords. Storage scheduling, latency, interactive applica-
tions, soft real-time applications, throughput, fairness.

I. INTRODUCTION

An I/O scheduler for a shared storage device is a com-
ponent in charge of deciding the order in which I/O requests
(read/write) are dispatched to the device. The scheduler decides
that order so as to achieve several goals1, the main ones being
typically:

• Achieving a high I/O throughput.
• Guaranteeing a low latency to time-sensitive tasks (see

below).
• Guaranteeing the desired fraction of the I/O throughput

to each application competing for the device.

As for the second main goal, two important classes of tasks
are real-time and interactive ones.

Real-time tasks, i.e., tasks/applications that typically issue
I/O requests spaced by at least a certain minimum inter-arrival
period, and for which each I/O request should be completed
within a given deadline. A common example is a multimedia
player, for which a good scheduler is expected, e.g., to guarantee
that frames are read in time to be played back without glitches.

Interactive tasks, i.e., tasks initiated by users, and such
that users typically have to wait for the completion of these
tasks before being able to perform next actions. Examples are:
booting a system, starting an application, opening a file from
within an application, and so on. Guaranteeing a low latency
to interactive tasks means guaranteeing a high responsiveness
to applications, or even to the overall system.

With respect to the above goals, BFQ is a proportional-share
I/O scheduler [1] that allows each application to be guaranteed

1Almost always in collaboration with other components of the layer of the
operating system that handles storage [5].

the desired fraction of the I/O throughput, even if the latter
fluctuates. This fraction is established by assigning a fixed
weight to each application. BFQ also allows the device to
achieve a high aggregate throughput.

BFQ-v1 is an enhanced version of BFQ [2], containing
several improvements to better boost throughput and, above
all, containing a few special heuristics to guarantee a high
application and system responsiveness. The effectiveness of
these heuristics is probably one of the reasons for the high pop-
ularity gained by BFQ. In this respect, BFQ has been adopted
in several top Linux and Android distributions, plus several
Linux-kernel variants for desktop and handheld systems. In
addition, source BFQ patches are maintained as an independent,
public free project [6].

Over the last years, BFQ has been not only maintained, but
also constantly improved, till the current v7r8 version has been
reached. A slightly previous version of BFQ has also been
proposed to the Linux kernel development community [3]. The
outcome of this proposal has been that BFQ is currently on the
right track to replace CFQ, the default storage-I/O scheduler in
most Linux distributions. In spite of this success, there is no
official, single document describing all the important changes
occurred in BFQ from its first v1 version to its last version.

A. Contribution

In this paper we describe the main BFQ changes from v1
to v7r8. These changes consists in:

• Improvements to the low-latency heuristics, aimed at
achieving a higher and more stable responsiveness.

• A new ad hoc low-latency heuristic for soft real-time ap-
plications. One of the main benefits of this new heuristic is
that, now, differently from BFQ-v1, a high responsiveness
does not come at the price of an occasionally increased
latency for soft real-time applications. In fact, soft real-
time applications are now privileged too.

• A special strategy for handling NCQ-capable devices with
respect to service guarantees: this strategy allows fairness
and low-latency guarantees to be preserved also on these
devices (this critical issue was only highlighted in [2], but
not yet solved in BFQ-v1).

• Proper handling of flash-based devices and NCQ-capable
HDD devices so as to maximize their throughput in all
scenarios where this does not hurt fairness and low-latency
guarantees.

• Proper handling of interleaved I/O workloads, which
allows for higher throughput with QEMU virtual machines.



Finally, to show the performance of BFQ-v7r8, we also
report a selection of our experimental results, on both an
HDD and an SSD, and concerning both throughput and
responsiveness. In these experiments, BFQ is compared with
all other standard Linux schedulers, that is: CFQ, DEADLINE
and NOOP.

B. Organization of this paper

Section II introduces both the system model and the
common definitions used in the rest of this paper. The original
version of BFQ is briefly described in Section III, while
Section IV outlines the additional heuristics and improvements
(explained in depth in [2]) that turn the original version of
BFQ into BFQ-v1. Section V is, instead, the core of the paper,
describing the changes that led to BFQ-v7r8. Finally, Section VI
reports experimental results.

II. SYSTEM MODEL AND COMMON DEFINITIONS

We consider a storage system made of a storage device,
a set of N applications to serve and the BFQ scheduler in-
between. The storage device is modeled as a sequence of
contiguous, fixed-size sectors, each identified by its position
in the sequence.

The storage device serves two types of I/O requests: reading
and writing a set of contiguous sectors. We say that a request
is sequential/random with respect to another request if the first
sector (to read or write) of the request is/is not located just
after the last sector of the other request.

At the opposite end, requests are issued by the N applica-
tions, which represent the possible entities that can compete
for access to the storage device in a real system, as, e.g.,
threads or processes. We define the set of pending requests
for an application as the backlog of the application. We say
that an application is backlogged if its backlog is not empty,
and idle otherwise. For brevity, we denote an application as
random/sequential if most times the next request it issues is
random/sequential with respect to the previous one. We say that
a request is synchronous if the application that issued it can
issue its next request only after this request has been completed.
Otherwise we denote the request as asynchronous. We say that
an application is receiving service from the storage system if
one of its requests is currently being served.

III. THE BFQ ALGORITHM

In this section we describe a simplified version of the
original BFQ algorithm. In particular, after describing the
logical scheme of BFQ, we provide a few details about how
BFQ boosts the throughput with sequential synchronous I/O
requests (see [1], [2] for more details). The logical scheme
of BFQ is depicted in Figure 1. Solid arrows represent the
paths followed by the requests until they reach the storage
device. There is an internal request queue for each application,
where the latter inserts its requests by invoking the interface
add_request() function. We define the set of requests present in
one of these queues as the backlog of the application owning
the queue. We say that an application is backlogged if its
backlog is not empty and idle otherwise. Access to the storage
device is granted to one application at a time, denoted as the
in-service application. Each application has a budget assigned

Storage
Device

Legend:

add_request(
dest_applic,

request)

Application

BFQ Scheduler

dispatch()

service loop

request queue
Appl. 1

request queue
Appl. 2

Paths followed by requests from issuing to dispatching

Components that move requests along the paths

request queue
Appl. N

C−LOOK
scheduler

Local

C−LOOK
scheduler

Local

C−LOOK
scheduler

Local

Appl. 2
requests

Appl. 1
requests

Appl. N
requests

Figure 1: Logical scheme of BFQ.

to it, measured in number of sectors. When an application
becomes the in-service one, it is served exclusively until either
this budget it exhausted or the backlog of the application
empties (the application becomes idle). Then BFQ selects the
new in-service application, and so on. In other words, the in-
service application cannot be preempted until one of the above
two events occurs. In more detail, each time BFQ turns from
not having any application backlogged to having at least one
application backlogged, the application service loop depicted
in Figure 1 starts. This loop, repeated until there is at least one
backlogged application, can be sketched as follows:

1) Choice of the next in-service application. The internal
fair-queueing scheduler, called B-WF2Q+ [1], [2], chooses
the next in-service application among the backlogged ones.
See below for more details on B-WF2Q+.

2) Request dispatch. The loop blocks, waiting for the
storage device to invoke the dispatch() function. When
there is at least one backlogged queue, operating system
mechanisms around BFQ guarantee that the device driver
will shortly invoke this function. When this happens:
a) The local C-LOOK scheduler chooses the request to

serve among those waiting in the queue of the in-service
application; this request is extracted from that queue and
dispatched to the storage device (right side of Figure 1).
Note that C-LOOK is effective with both rotational
and non-rotational devices, as both achieve maximum
throughput with sequential I/O.

b) The budget of the application is decremented by the
size of the dispatched request.

c) If the budget of the application is exhausted or the
application has no more backlog, jump to step 3,
otherwise repeat step 2.

3) Application deactivation and budget recomputation.
The application stops being the in-service one, and is
assigned a new budget. A simple feedback-loop algorithm
is used to compute the new budget.

Concerning the first step of the application service loop, it is
worth stressing that B-WF2Q+ guarantees to each application
a fraction of the throughput independent of the size of the
budgets assigned to the application. This property may seem
counterintuitive at a first glance, because the larger the budget



assigned to an application is, the longer the application will use
the device once granted access to it. But B-WF2Q+ basically
balances this fact by postponing the service of an application in
proportion to the budget currently assigned to the application.
In this respect, being free to choose budgets without affecting
throughput shares is one of the key properties that enables BFQ
to provide, at the same time, both accurate guarantees and a
high throughput (see [1], [2] for further details).

Boosting the throughput with sequential synchronous requests

According the step 2.c of the application service loop,
when an application becomes idle, BFQ deactivates it and
starts serving a new application. However, if the last request
of the application was synchronous, then the application may
be deceptively idle, as it may be already preparing the next
request and may issue it shortly. In fact, a minimum amount
of time is needed for an application to handle a just-completed
synchronous request and to submit the next one.

For this reason, when an application becomes idle but its
last request was synchronous, BFQ actually does not deactivate
the application and hence does not switch to another application.
In contrast, in this case BFQ idles the device and waits, for a
time interval in the order of the seek and rotational latencies, for
the possible arrival of a new request from the same application.
The purpose of this wait is to allow a possible next sequential
synchronous request to be waited for and sent to the device as
it arrives. Though apparently counterintuitive, on rotational
devices this wait usually results in a boost of the device
throughput [4] with sequential and synchronous applications.
In this respect, note that most mainstream applications issue
synchronous requests.

As shown in [1], device idling is instrumental also in
preserving service guarantees with synchronous requests. On
flash-based devices, the throughput with random I/O is high
enough to make idling detrimental at a first glance. But most
operating systems perform readahead, which makes idling
effective also on these devices.

IV. BFQ-V1

This section outlines the improvements, introduced in the
original version of BFQ, that led to BFQ-v1. Full details can
be found in [2]. This outline will help us motivate and better
describe the changes that led finally to BFQ-v7r8 (Section V).

A. Low latency for interactive applications

As highlighted in the introduction, a system is responsive if
it starts applications quickly and performs the tasks requested
by interactive applications just as quickly2. This fact motivates
the first step of the event-driven heuristic presented in this
subsection and called just low-latency heuristic hereafter.

1) To privilege the I/O of a just-created application, the
weight of its associated queue is raised by multiplying

2All other system-related factors being equal, the minimum time needed to
start a given application, or to complete a given task, depends on the type and
amount of I/O involved, and on the speed of the storage device. In particular,
such a minimum time interval is extremely variable: as can be seen, e.g., from
our experimental results in [8], it may range from tens of milliseconds to
several seconds. See Section V-A for how BFQ deals with this issue.

it by a weight-raising coefficient Crais. The initial I/O
of the application is most likely due to the application
loading itself, thus guaranteeing a higher fraction of the
throughput to this I/O will speed up exactly the loading
of the application.

2) The weight of the queue is linearly decreased while the
application receives service, until it becomes again equal
to initial value.

3) While weight-raised, the queue unconditionally enjoys
device idling every time it empties; in fact, if the requests
of a queue are synchronous, then performing device idling
for the queue is a necessary condition to guarantee that the
queue receives a fraction of the throughput proportional
to its weight (see [2] for details).

In addition, consider that any interactive application blocks
and waits for user input both after starting up and after executing
some task. After a while, the user may trigger new operations,
after which the application stops again, and so on. Accordingly,
the low-latency heuristic weight-raises again a queue in case
it becomes backlogged after being idle for a sufficiently long
time. The weight-raising then lasts for the same time as for a
just-created application.

B. Other improvements

This subsection briefly lists other improvements, introduced
in BFQ-v1, which are basically unchanged in BFQ-v7r8, and
which do not need to be described in detail to understand the
features of BFQ-v7r8. Full details on these improvements can
be found in [2].

A new peak rate estimator was introduced to smooth out
spikes which caused estimation errors on the device peak rate
(which in its turn is used in computing the maximum possible
budget assigned to applications).

Budget-assignment rules were re-tuned so as to converge
to large budgets more quickly and to decrease the worst-case
latency experienced by first requests of applications.

More fairness to random and slow applications was
provided by making less stringent the rules used to limit device
utilization for these types of applications.

A write overcharge coefficient was introduced to avoid
starvation of read requests in the presence of burts of write
requests (problem caused by the internal caching of write
requests performed by devices).

V. BFQ-V7R8

This section describes in some detail the main improvements
and extra heuristics implemented on top of BFQ-v1, and leading
to BFQ-v7r8. We have already provided a summary of these
changes in Section I-A.

A. New low-latency heuristic

The low-latency heuristic of BFQ-v7r8 is identical to that of
BFQ-v1, apart from the following differences. In BFQ-v1, the
low-latency heuristic performs a smooth decrease of the weight
of a weight-raised queue, until the weight reaches its original
value. Instead, in BFQ-v7r8 the heuristic is more aggressive:
it lets a weight-raised queue keep its weight constantly equal



to orig_weight * Crais, for the full duration of its weight-
raising period (period computed as detailed below). In addition,
the device-idling timeout for a weight-raised queue is raised
as well: this reduces the probability that an application is
deactivated because it performs synchronous requests and its
next request does not arrive in time. Reducing this probability
is fundamental to make more sure that, also in the presence of
deceptive idleness, the application receives the desired, high
fraction of the throughput.

Finally, the weight-raising period for an application is
automatically computed

• according to the device speed and type (rotational or non-
rotational), and

• so as to be equal to the time needed to load (start up) a
large-size application on that device, with cold caches and
with no additional background workload.

B. Low latency for soft real-time applications

To guarantee a low latency also to the I/O requests
issued by soft real-time applications, BFQ-v7r8 sports an
additional, dedicated heuristic, which weight-raises also the
queues associated to applications deemed as soft real-time.
To be deemed as soft real-time, an application must meet
two requirements. First, the application must not require an
average bandwidth higher than the approximate bandwidth
required to playback or record a compressed high-definition
video. Second, the request pattern of the application must be
isochronous, i.e., after issuing a request or a batch of requests,
the application must stop issuing new requests until a certain,
minimum amount of time, say ∆, has elapsed from when all
the pending requests of the application have been completed.
After that, the application may issue a new batch, and so on.

Actually, the second requirement is stronger that the
standard isochrony requirement, because, according to the
latter, an application is still deemed as isochronous even if
it issues new requests immediately after its last pending request
is completed. BFQ-v7r8 uses, instead, the above stronger
requirement to prevent also greedy (i.e., I/O-bound) applications
from being incorrectly deemed, occasionally, as soft real-time.
In fact, if any amount of time, including zero, is fine, then even
a greedy application may, paradoxically, meet both the above
bandwidth and isochrony requirements, if: (1) the application
performs random I/O and/or the device is slow, and (2) the CPU
load is high. The reason is the following. First, if condition
(1) is true, then, during the service of the application, the
throughput may be low enough to let the application meet the
bandwidth requirement. Second, if condition (2) is true as well,
then the application may occasionally behave in an apparently
isochronous way, because it may simply stop issuing requests
while the CPUs are busy serving other processes.

With proper values for ∆, the strong isochrony requirement
of BFQ-v7r8, on one side, filters out the above possible false
positives, because greedy applications issue all of their requests
as quickly as they can. On the other side, it lets actual soft real-
time in, because the latter always spend some time processing
data after each batch of requests is completed.

In particular, the heuristic works as follows. First, in view
of the isochrony requirement, the heuristic checks whether

an application may be soft real-time (and therefore gives to
the application the opportunity to be deemed as such) only
when both the following two conditions happen to hold: 1)
the queue associated with the application has expired and is
empty, 2) there is no outstanding request of the application.
Then, suppose that both conditions hold at time, say, t_c and
that the application issues instead its next request at time, say,
ti. At time tc the heuristic computes the next time instant,
soft_rt_next_start, such that, only if ti ≥ soft_rt_next_start,
then both the above bandwidth and isochrony requirements are
met, i.e., such that, in particular, ti ≥ tc + ∆ holds.

The current value of ∆ is a little bit higher than the value,
8 ms, that we have found, experimentally, to be adequate on a
real, general-purpose machine. We had to add 4 system ticks3

to this base value, to make the filter quite precise also in slower,
embedded systems, and in KVM/QEMU virtual machines.

If the application actually issues its next request after time
soft_rt_next_start, then its associated queue will be weight-
raised for a relatively short time interval. If, during this time
interval, the application proves again to meet the bandwidth
and isochrony requirements, then the end of the weight-raising
period for the queue is moved forward, and so on. Note that
an application whose associated queue never happens to be
empty when it expires will never have the opportunity to be
deemed as soft real-time.

C. Preserving an accurate service and a high throughput on
modern drives

BFQ-v7r8 implements some special strategies to preserve,
also on modern drives, two of its main service properties:
accurate service guarantees (including low latencies) and a high
throughput. As for the first service property, modern storage
devices usually implement Native Command Queueing (NCQ),
which boosts the throughput by prefetching and internally
reordering requests. I/O schedulers typically allow NCQ-
capable drives to prefetch I/O requests to achieve maximum
throughput. Unfortunately, as discussed in detail and shown
experimentally in [2], this may cause fairness and latency
guarantees to be violated. The main problem is that the internal
scheduler of an NCQ-capable drive may postpone the service of
some unlucky (prefetched) requests as long as it deems serving
other requests more appropriate to boost the throughput.

In order to address this issue, which was still open as of [2],
BFQ-v7r8 always grants device idling to weight-raised queues,
even if the device supports NCQ. This allows BFQ to start
serving a new queue, and therefore allows the drive to prefetch
new requests, only after the idling timeout expires. At that
time, all the outstanding requests of the expired queue have
been most certainly served.

On the opposite end, idling may be detrimental for aggregate
throughput, because it prevents the drive from pre-fetching
many requests and hence achieving maximum performance. For
this reason BFQ-v7r8 performs idling only when strictly needed.
In particular, BFQ-v7r8 disables idling for all symmetric
workloads from the point of view of weights (i.e., in which each

3A tick is the finest time resolution in a Linux system, in that it is equal to
the inverse of the frequency of the system timer. A tick typically ranges from
1 to 10 ms.



application has to receive the same fraction of the throughput).
Indeed, with these workloads each application tends to receive
about the same fraction of the throughput, as actually desired,
even if idling is disabled. In addition, possible deviations from
a perfectly fair service are typically not critical in symmetric
scenarios. In fact, if doing I/O, time-sensitive applications
would have been weight-raised by BFQ, thereby making the
scenario most certainly asymmetric.

Rotational devices need extra care with respect to flash-
based storage devices: if applications perform sequential I/O,
then idling is vital to achieve maximum throughput, even with
NCQ. Therefore, with rotational devices, BFQ-v7r8 may disable
idling only for applications performing random I/O, even if the
device is NCQ-capable.

D. Early Queue Merge

A set of applications may happen to perform interleaved
reads, i.e., requests whose union would give rise to a sequential
read pattern. This happens, e.g., with QEMU/KVM, which
splits the I/O generated by a guest into multiple chunks, and
lets these chunks be served by a pool of processes, iteratively
assigning the next chunk of I/O to the first available process.

To achieve a high throughput also with interleaved reads,
BFQ-v7r8 adopts a mechanism named Early Queue Merge
(EQM), whose purpose is to get a sequential read pattern out
of interleaved read requests. EQM checks every newly arrived
request against the next request of the in-service application,
and, if the two requests are close, interprets this fact as an
indication that the application that issued the newly-arrived
request and the in-service application are likely to be performing
interleaved I/O. In this case, EQM merges the queues associated
to the two applications. Once the two queues are merged, the
C-LOOK scheduler in Step 2.a of the application service loop
in Section III guarantees that the service order of the requests in
the queue resulting from the merge is as sequential as possible.

Finally, EQM is implemented in such a way to preserve
the low-latency properties of BFQ, by properly keeping the
weight-raising state of merged queues.

VI. EXPERIMENTAL RESULTS

In this section we report a selection of our last test results,
with BFQ-v7r8, CFQ, DEADLINE and NOOP, under Linux
v4.0.0, and on the following two devices:

• A (high-speed) Seagate ST1000DM003 HDD
• A PLEXTOR PX-256M5S SSD

For each device, we report throughput and application-
responsiveness results. As for responsiveness, we report only
our results on the cold-cache start-up time of a heavy commonly-
used application, oowriter (Open Office Writer).

We present only this selection of results for space constraints.
Full results for many more test cases (including responsiveness
with other applications, latency for soft real-time applications,
throughput with interleaved reads, and so on), and on other
devices (including, e.g., RAIDs and eMMCs) can be found
in [8]. In all these other combinations of test cases and devices,
the relative performance among the schedulers is about the
same as in the selection presented here. We have obtained all

 0

 50

 100

 150

 200

 250

10r-seq 10r-rand 5r5w-seq 5r5w-rand

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t 

[M
B

/s
e

c
]

Workload

Disk peak rate

bfq

cfq

deadline

noop
161

.8

149

.9

122

.81

130

.7

56

.82

61

.8

55

.82

60

.78

Figure 2: Throughput on the Seagate HDD.

 0

 2

 4

 6

 8

 10

 12

 14

10r-seq 10r-rand 5r5w-seq 5r5w-rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Workload

Start-up time on idle disk

bfq

cfq

deadline

noop

3.4

4

9.2

6.2

X X X XX X X XX X X X

Figure 3: oowriter start-up time on the Seagate HDD.

these results with the benchmark suite described in [2] and
available at [7].

A. Seagate HDD

Figure 2 shows the throughput achieved by each scheduler
while one of the following four heavy workloads is being
executed: 10 parallel sequential or random readers (10r-seq,
10r-rand), 5 parallel sequential or random readers plus 5 parallel
sequential or random writers (5r5w-seq, 5r5w-rand). BFQ
outperforms the other schedulers with the sequential workloads,
especially DEADLINE and NOOP. BFQ outperforms the other
schedulers also with 5r5w-rand, but in this case the maximum
gap is with respect to CFQ. With 10r-rand all the schedulers
achieve, instead, about the same performance.

Figure 3 shows the cold-cache start-up time of oowriter
while one of the above heavy background workloads is being
executed. The symbol X means that, for that workload and
with that scheduler, the application failed to start in 60 seconds.
Except for testcases including writers, BFQ again guarantees a
start-up time comparable to that achieved with an idle device,



 0

 100

 200

 300

 400

 500

 600

10r-raw_seq 10r-raw_rand

A
g

g
re

g
a

te
 t

h
ro

u
g

h
p

u
t 

[M
B

/s
e

c
]

Workload

Device peak rate with one sequential reader

bfq

cfq

deadline

noop
401

167

400

167

400

178

400

179

Figure 4: Throughput on the Plextor SSD.

 0

 2

 4

 6

 8

 10

 12

 14

 16

10r-raw_seq 10r-raw_rand

S
ta

rt
-u

p
 t

im
e

 [
s
e

c
]

Workload

Start-up time on idle device

bfq

cfq

deadline

noop

1.1
.79

X

3.3

10

.8

11

.81

Figure 5: oowriter start-up time on the Plextor SSD.

whereas with all the other schedulers the application fails,
with any background workload, to start in 60 seconds. As
for testcases including writers, the higher start-up time of
oowriter with BFQ is mainly due to well-known issues with
asynchronous writes, issues little related with the storage-I/O
scheduler at hand. In more detail, oowriter needs to perform
some asynchronous writes (probably on a log file) to complete
its start-up process. Because of the high rate at which the
five greedy writers issue write requests, dirty pages stack up
in the page cache: after that, and until greedy writers stop,
also asynchronous writes become blocking, i.e., also a process
issuing an asynchronous write request is blocked until that
request is completed. This significantly inflates the start-up
time of oowriter, independently of the storage-I/O scheduler.

B. PLEXTOR SSD

As can be seen in Figure 4, with the SSD we considered
only raw readers, i.e., processes reading directly from the device.
We made this choice to avoid writing large files repeatedly,
and hence wearing out the device too quickly. With sequential

readers, the throughput achieved by BFQ is the same as the
other schedulers. On the other hand, BFQ loses about 6 percent
of throughput with random readers, for the following reason.
With random readers, the number of IOPS is extremely higher,
and all CPUs spend all their time either executing instructions or
waiting for I/O (the total idle-time percentage is 0). Therefore,
the processing time of I/O requests influences the maximum
throughput achievable. As a conclusion, the throughput slightly
grows as the complexity, and hence the execution time, of the
schedulers decrease.

As for responsiveness, as shown in Figure 5, BFQ achieves
almost the lowest-possible start-up time with both workloads.
The high start-up times with the other schedulers in the presence
of sequential readers is a consequence also of the fact that,
to maximize throughput, the device prefetches requests, and,
among internally-queued requests, privileges sequential ones.
As explained in Section V-C, BFQ instead prevents the device
from prefetching requests when that would hurt responsiveness,
low latency or, in general, fairness guarantees.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have described BFQ-v7r8 and its improve-
ments with respect to BFQ-v1. According to our experimental
results and to the figures of merits we considered, in most
cases BFQ-v7r8 outperforms existing, production-quality Linux
schedulers. Still, BFQ has further important challenges to face.
First, to cope with high-speed devices, a lighter version of BFQ
may need to be defined. Secondly, a new, multi-queue software
architecture has been devised in the Linux kernel to keep up
with the speed of new-generation, fast storage devices (more
precisely, this new architecture has been devised in the Linux
block layer, where a scheduler like BFQ resides). To preserve
service guarantees also in an architecture where I/O requests
flow through multiple, independent queues, BFQ may need
somehow to be turned into a distributed algorithm. Finally, to
preserve low-latency guarantees also in the presence of bursts
of asynchronous write requests, the well-known asynchronous-
write issues of modern operating systems need to be somehow
addressed. While these issues are not caused by the storage-I/O
schedulers themselves, the latter could become part of possible
solutions to the problem.

REFERENCES

[1] P. Valente and F. Checconi, High throughput disk scheduling with fair
bandwidth distribution. IEEE Transactions on Computers 59.9 (2010).
http://algogroup.unimore.it/people/paolo/disk_sched/bfq-techreport.pdf

[2] P. Valente and M. Andreolini, Improving application responsiveness with
the bfq disk I/O scheduler. Proceedings of the 5th Annual International
Systems and Storage Conference. ACM, 2012.
http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.
pdf

[3] https://lkml.org/lkml/2014/5/27/314
[4] S. Iyer and P. Druschel, Anticipatory scheduling: A disk scheduling

framework to overcome deceptive idleness in synchronous I/O. ACM
SIGOPS Operating Systems Review. Vol. 35. No. 5. ACM, 2001.

[5] M. Bjørling et al. Linux block IO: introducing multi-queue SSD access
on multi-core systems. Proceedings of the 6th International Systems and
Storage Conference. ACM, 2013.

[6] http://algogroup.unimore.it/people/paolo/disk_sched/
[7] http://algogroup.unimore.it/people/paolo/disk_sched/benchmark-suite.

php
[8] http://algogroup.unimore.it/people/paolo/disk_sched/results.php

http://algogroup.unimore.it/people/paolo/disk_sched/bfq-techreport.pdf
http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.pdf
http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.pdf
https://lkml.org/lkml/2014/5/27/314
http://algogroup.unimore.it/people/paolo/disk_sched/
http://algogroup.unimore.it/people/paolo/disk_sched/benchmark-suite.php
http://algogroup.unimore.it/people/paolo/disk_sched/benchmark-suite.php
http://algogroup.unimore.it/people/paolo/disk_sched/results.php

	Introduction
	Contribution
	Organization of this paper

	System model and common definitions
	The BFQ algorithm
	BFQ-v1
	Low latency for interactive applications
	Other improvements

	BFQ-v7r8
	New low-latency heuristic
	Low latency for soft real-time applications
	Preserving an accurate service and a high throughput on modern drives
	Early Queue Merge

	Experimental results
	Seagate HDD
	PLEXTOR SSD

	Conclusions and future work
	References

