
I/O control may be slowing your storage
down dramatically

August 22, 2018

Many services, from WEB hosting and video streaming, to cloud storage, need to move
data to/from storage. And they require that each per-client I/O flow be guaranteed
a non-null bandwidth and a bounded latency. An expensive solution to provide these
guarantees is to overprovision storage resources, so as to keep each resource underutilized,
and thus have plenty of bandwidth available for the few I/O flows dispatched to each
medium. Or one can control I/O. Throttling is a classical solution to attain this goal: it
guarantees the desired bandwidth and latency to each flow, even on fully utilized drives.
So problem solved: by controlling I/O with throttling, we can meet bandwidth and
latency requirements using many fewer, highly utilized resources. Unfortunately, no.

Throttling does guarantee control even on drives that happen to be highly utilized,
but, as we are going to see, it has a hard time actually making drives highly utilized.
Even with greedy I/O flows, it easily ends up utilizing down to 20% of the available
speed of a flash-based drive.

Such a speed loss may be particularly problematic with lower-end storage. On the
opposite end, it is somewhat also disappointing with high-end hardware, as the Linux
block I/O stack itself has been redesigned from the ground up [1], exactly to fully
utilize the high speed of modern, fast storage. Finally, this problem affects distributed
environments too, simply because it affects every node. In addition, throttling fails to
guarantee the expected bandwidths if I/O contains both reads and writes, or ON/OFF
sources.

On the bright side, there seems to be now an effective alternative for controlling I/O:
the proportional-share policy, backed by the bfq I/O scheduler. It enables the utilization
of storage speed to be pushed up to about 100%, at least with part of the problematic
workloads for throttling. An improved version of bfq seems to also have chances to
achieve this optimal result with most workloads. Finally, bfq guarantees bandwidths
with all workloads. The current limitation of bfq is that its execution overhead becomes
significant at speeds above 400 KIOPS, on commodity CPUs.

To describe the situation in more detail, we start by completing the list of the main
cases where individual I/O flows must be guaranteed a low latency, a minimum band-
width, or just some fairness:

1



• as mentioned above, a server, or a node in a data center, serving I/O for multiple
clients, and possibly executing other administrative tasks at the same time;

• a host with several virtual machines or containers doing I/O at the same time;

• a personal system serving extra I/O in the background while some foreground I/O
needs to be completed.

The performance of I/O control varies greatly depending on whether I/O flows con-
stantly have pending I/O (for long). When this does not happen, the situation is rather
rosy, even if extra workloads do saturate the device. For this lucky case, we survey
the situation briefly in the next section. On the opposite end, the above throughput
problems arise when flows are so many, or so heavy, that each flow has pending I/O, and
thus requires bandwidth, for long. These problems are the focus of this article.

1 Low latency for lightweight, short I/O: all seems well

Through the bfq I/O scheduler [2], Linux can now guarantee a very low latency to
lightweight flows containing sporadic, short I/O. No throughput issue arises, and no
configuration is required. This capability benefits important time-sensitive tasks, such
as playing or streaming videos or audios, as well as executing commands or starting
applications. Up-to-date results on latency are available for storage ranging from slow
to fast rotational devices [3, 4], and from embedded flash [5, 6, 7] to SATA [3, 8] and
NVMe [9] SSDs.

Although benchmarks are not available yet, these guarantees might be provided also
by the newly proposed IO latency cgroups controller [10]: it allows, but also imposes, to
set target latencies for I/O requests of each group of processes, and privileges the groups
with the lowest target latency.

2 Let’s get started

As above stated, problems arise with heavier I/O flows. We analyze these problems
through a set of tests. In the next sections we first introduce our testbed, i.e.,

• the system on which we executed our benchmarks;

• the main actors in our workloads: target and interferers;

• the workloads;

• the I/O policies we tested;

• the configurations we used for I/O policies;

• the quantities we measured.

2



Then we report our results, which can be reproduced very easily1.
In particular, for conciseness, we shrank the next sections as much as possible. You

can find missing information and more detailed comments in this document [11].

3 System and storage medium

We ran our tests with an ext4 filesystem mounted on a PLEXTOR PX-256M5S SSD,
which features a peak rate of ∼160MB/s with random I/O, and of ∼500 MB/s with
sequential I/O. We used blk-mq, in Linux 4.18 (Ubuntu 18.04, although the distribution
should have no influence on these tests). The system was equipped with a 2.4GHz Intel
Core i7-2760QM CPU and a 1.3 GHz DDR3 DRAM. In such a system, a single thread
doing synchronous reads reaches a throughput of 23 MB/s.

4 Target and Interferers

Multiple, prolonged I/O flows can generate highly variable mixes of I/O (reads+writes,
sequential+random, constant+ON/OFF, ...). And the properties of a mix of I/O heavily
influence the performance of a storage device, as well as the ability of I/O policies to
guarantee bandwidths. Thus, to carry out a thorough analysis, one needs to generate a
wide range of I/O mixes. As a feasible solution to achieve this goal, we use synthetic
I/O flows in our tests. We make a distinct process generate each such I/O flow.

To provide bandwidth guarantees to the I/O of these processes (through I/O policies),
we encapsulate each process in a distinct group. Groups belong to two categories:

Target A single-process, I/O-bound group, whose I/O we focus on. In particular, we
measure the I/O throughput enjoyed by this group, to get the minimum bandwidth
guaranteed to the group: the throughput of the group is at least as high as the
minimum bandwidth guaranteed to the group.

Interferer A single-process group, whose role is to generate additional I/O that interferes
with the I/O of the target.

Workloads contain one target and multiple interferers. Note that, even if we focus on
only one target, we do consider multiple-flow configurations (as in, e.g., servers with
multiple active clients). We analyze what happens to one generic flow, for as many
as possible distinct combinations of workloads, as a feasible way to assess what would
happen to any flow in any generic set of flows.

The single process in each group either reads or writes one file—different from the
file read or written by any other process—after invalidating the buffer cache for the
file. We use the following nomenclature for brevity. We call just reader/writer either
the target or an interferer, depending on whether the single process in the target or the

1First git clone https://github.com/Algodev-github/S.git, then cd S/run multiple benchmarks

&& sudo ./run main benchmarks.sh bandwidth-latency "low-none max-none prop-bfq"

3



interferer performs the reading/writing of one file. Writers do buffered writes. We define
a reader/writer as

• random or sequential, if it (the reader/writer) reads/writes its file at random po-
sitions or sequentially;

• constant or sporadic if it is constantly I/O-bound or if it randomly oscillates be-
tween ON and OFF I/O phases.

Basing on the last definition, we define a workload as static or dynamic if, respectively,
all or not all readers and writers are constant. Finally, we define an interferer as active or
inactive if it does or never does I/O during the test. When we mention a reader/writer
interferer, we assume implicitly that such an interferer is active.

5 Workloads

The properties of an I/O mix depend on the properties of the I/O flows, and of the
I/O stack that manipulates the mix: number of flows, I/O direction (reads/writes), spa-
tial locality (sequential/random I/O), temporal locality (active/inactive, static/dynamic
flows), I/O depth, I/O policy, and so on. It is practically impossible to test all combina-
tions of the values of these parameters. So, we tried to cover at least the combinations
that supposedly influence mostly the performance of the storage device and of the I/O
policies. To this purpose, we defined the groups of generic workloads reported in Table 1.

For each group, the table reports the mixes of interferers that define that group. To get
each workload, we considered, for each mix of interferers in the group, two possibilities
for the target: it could be either a random or a sequential sync reader.

6 I/O policies

Linux provides two I/O-control mechanisms for guaranteeing (a minimum) bandwidth,
or at least fairness, to long-lived flows: the throttling and the proportional-share I/O
policies [12].

With throttling, one can set a maximum-bandwidth limit for the I/O of each group [12].
We call this limit max limit, for brevity. A group gets throttled if it issues I/O at a higher
rate than its max limit. Max limits can be used to provide the service guarantee we focus
on in this article, i.e., to guarantee minimum bandwidths to I/O flows. This result can
be obtained in an indirect way: as a function of the total throughput available, per-group
max limits can be set in such a way that there remains enough bandwidth available for
each group. To this purpose, max limits must be sized, more precisely, according to the
lowest total throughput that may happen to be available, i.e., according to the lowest
peak rate that the device may happen to reach with the expected workloads.

Unfortunately, max limits have two evident drawbacks in terms of throughput. First, if
some groups do not use their allocated bandwidth, that bandwidth cannot be reclaimed
by other active groups. Second, unless expected workloads are known very precisely,

4



Table 1: Groups of workloads and corresponding interferer mixes. The target is either a
random or a sequential constant sync reader.

Group of workloads Set of interferers

Static sequential Four constant synchronous sequential readers or
four constant asynchronous writers, plus other
five inactive interferers.

Static with varying random-
ness

Four constant synchronous readers or four con-
stant asynchronous writers, with different de-
grees of I/O randomness, plus other five inactive
interferers. As for the degree of randomness of
readers and writers, one reader/writer is sequen-
tial, while the other three are random, with block
sizes equal, respectively, to 4k, 128k and 1024k.

Static random Four constant synchronous random readers, all
with block size equal to 4k, plus other five inac-
tive interferers.

Dynamic sequential/random Two sporadic synchronous readers, one being
random and one sequential; plus two sporadic
synchronous writers, one random and one se-
quential; plus other five inactive interferers.

5



limits must comply with the very worst-case speed of the device, namely the device peak
rate with purely random I/O. Such limits will evidently leave a lot of throughput unused
with workloads that, if not limited, would make the device reach higher throughputs
than just the random-I/O peak rate. To sum up, maximizing throughput is basically
not a goal of max limits. Our results show the obvious consequences of the above two
drawbacks.

Because of these drawbacks, an opposite, still experimental, low limit has been added
to the throttling policy [13]. If a group is assigned such a low limit, then the throttling
policy automatically, and dynamically, limits the I/O of the other groups in such a way
to guarantee to the group a minimum bandwidth equal to its assigned low limit. In
particular, this new throttling mechanism addresses the above throughput-loss draw-
backs as follows: it throttles no group as long as every group is getting at least its
assigned minimum bandwidth. We test this mechanism too. We do not consider also
the very interesting problem of guaranteeing minimum bandwidths and, at the same
time, enforcing maximum bandwidths.

The other I/O policy available in Linux, proportional share [12], targets weighted
fairness. Each group is assigned a weight, and should receive a fraction of the total
throughput proportional to its weight. This service scheme guarantees minimum band-
widths too, as low limits do in throttling. In particular, it guarantees to each group a
minimum bandwidth equal to the ratio between the weight of the group, and the sum
of the weights of all the groups that may be active at the same time.

The actual implementation of the proportional-share policy, on a given drive, depends
on what flavor of the block layer is in use for that drive. If the flavor is legacy blk, then
the policy is implemented by the cfq I/O scheduler. Unfortunately, cfq fails to control
bandwidths with flash-based storage, especially on drive featuring command queueing.
We do not consider this case at all in our tests. With blk-mq, proportional share is
implemented by bfq . This is the combination we consider in our tests.

7 I/O-policy configurations

To benchmark both throttling (max and low limits) and proportional share, we tested,
for each workload, the three pairs of I/O policies [12] and I/O schedulers reported in
Table 2, with the configurations reported in the same table. In the end, we have three
test cases for each workload. In addition, for some workloads, we considered two versions
of bfq for the proportional-share policy.

One note before commenting on configurations: it is unfair, in many respects, to
compare max limits with low limits and proportional share. Differently from the latter
two solutions, max limits lack any mechanism for redistributing unused bandwidth. Yet
the goal of this article is not to compare solutions basing on their similarity, but to
survey all available solutions. From this point of view, max limits are probably the most
popular solution for controlling bandwidth in Linux.

For throttling policies, we report results with only none as I/O scheduler, because
results are the same with kyber and mq-deadline.

6



Table 2: Short names for pairs policy-scheduler, I/O policies, associated I/O schedulers,
parameter configurations. Parameter stands for low limit, max limit or weight,
depending on the policy. The same limits are set for both reads and writes.

Name I/O policy Scheduler Parameter
for target

Parameter
for each
of the
four
active in-
terferers

Parameter
for each
of the five
inactive
interfer-
ers

Sum of
parame-
ters

low-
none

Throttling
with low
limits

none 10MB/s 10 MB/s
(tot: 40)

20 MB/s
(tot: 100)

150
MB/s

max-
none

Throttling
with max
limits

none 10MB/s 15 MB/s
(tot: 60)

25 MB/s
(tot: 125)

195
MB/s

prop-
bfq

Proportional
share

bfq 300 100
(tot: 400)

200
(tot: 1000)

1700

The capabilities of the storage medium drove policy configurations. low-none was the
policy for which it was hardest to find a working configuration, i.e., a configuration for
which the target low limit was actually met with at least the simplest workloads. So
we first looked for a working configuration for low-none, and then configured the other
policies accordingly.

If interferers can only be readers, then 10 MB/s is apparently about the maximum
bandwidth that, on this drive, low-none can successfully guarantee to the target. In
particular, low-none cannot guarantee more than 10MB/s if the target is a random
reader, and interferers are sequential readers [14]. A configuration for which low-none
provides this best-possible bandwidth guarantee is if we set to 10 MB/s the low limit
for the target and for each active interferer. We used this configuration in our tests.
Results remains the same regardless of the values used for target latency and idle time;
at any rate, in these tests we set these parameters, respectively, to 100us and 1000us for
every group. Finally, we set the low limits of the inactive interferers to twice the limits
for active interferers, to possibly pose greater difficulties to the policy.

To get a fair comparison, we configured the other policies with the primary goal of
guaranteeing the same minimum bandwidth as low-none to the target, in the same worst
case as above. In particular, we chose the configurations that achieved this goal and, still
for the sake of fairness, had the same ratio as low-none between the limits/weights of
active and inactive interferers. In addition, to help max-none get the maximum possible
throughput, we scaled interferer max limits so as to saturate the peak rate reached
by the medium in the worst case, i.e., with random I/O (160 MB/s). More precisely,

7



considering that groups are unlikely to be all active at the same time in realistic scenarios,
we overcommitted bandwidths a little bit, to make max-none get higher throughputs.

8 Quantities measured and statistics

We ran each workload ten times for each policy, plus ten times without any I/O control,
i.e., with none as I/O scheduler and no I/O policy is use. For each run, we measured the
I/O throughput of the target (which reveals the bandwidth guaranteed to the target),
the cumulative I/O throughput of the interferers, and the total I/O throughput. These
quantities fluctuated very little during each run, as well as across different runs. Thus
in the graphs we report only averages over per-run average throughputs. In particular,
for the case of no I/O control, we report only the total I/O throughput, to give an idea
of the throughput that can be reached without imposing any control.

9 Results

A note before showing results: none of the throughput losses reported in this section have
anything to do with I/O-request manipulation, such as request merging. These losses
are due only to intrinsic issues of the I/O policies, which we highlight as we comment
on results.

Figure 1 shows throughput results for the simplest group of workloads: static sequential
(Table 1). With a random reader as target, against sequential readers as interferers, low-
none does guarantee the configured low limit to the target. Yet it reaches only a very
low total throughput, for the following reason. The throughput of the random reader
evidently oscillates around 10MB/s during the test. This implies that it is at least
slightly below 10MB/s for a significant percentage of the time. But when this happens,
the low-limit mechanism limits the maximum bandwith of every active group to the low
limit set for the group, i.e., to just 10 MB/s, as discussed in detail in [14].

The end result is a total throughput lower than 10% of the throughput reached without
I/O control. Yet, the latter, very high throughput is reached by chocking the random
I/O of the target, and serving almost only the throughput-boosting sequential I/O of
the interferers. Then, it is probably more interesting to compare low-none throughput
with the throughput reachable while actually guaranteeing 10MB/s to the target. The
target is a single sync random reader, which reaches 23 MB/s while in service. So, to
guarantee 10 MB/s to the target, it is enough to serve it for about half of the time,
and the interferers for the other half. Since the device reaches ∼500MB/s with the
sequential I/O of the interferers, the resulting throughput with this service scheme would
be (500+23)/2 ∼ 260 MB/s. low-none then reaches less than 20% of the total throughput
that could be reached while still preserving the target bandwidth.

As for max-none, the very low total throughput that max-none reaches with this first
workload (one random reader against sequential readers) is due to the rigidity of the
scheme: the bandwidth allocated for, but not used by the inactive interferers is not
reclaimable. Even worse, the total throughput would become arbitrarily lower than

8



low
none

max
none

prop
bfq

0

100

200

300

400

500

Ta
rg

et
, i

nt
er

fe
re

rs
 a

nd
 to

ta
l t

hr
ou

gh
pu

t

10.05 9.724 11.75
40.79 56.15

219.3

I/O policy:
Scheduler:

Interferers:
Target:

seq readers
rand reader

low
none

max
none

prop
bfq

1.579 7.694 18.43

202.3

73.02
87.55

seq writers
rand reader

low
none

max
none

prop
bfq

10.31 9.596

133.1

39.94 56.08

281.6

seq readers
seq reader

low
none

max
none

prop
bfq

14.36 9.562

291.4

104.5
75.08

96.41

seq writers
seq reader

Throughputs for static interferer workloads, made of seq sync readers or seq writers

Cumulative avg throughput of interferers
Avg throughput of target
Avg total throughput (sum of bars)

Avg throughput reached without any I/O control
Min avg throughput to be guaranteed to target

Figure 1: Results for the static sequential workloads.

that, if more interferers became inactive and/or maximum bandwidths were configured
in unluckier ways.

Finally, prop-bfq provides the target with a slightly higher throughput than the other
policies. This makes it harder for prop-bfq to reach a high total throughput, because
prop-bfq serves more random I/O (from the target) than low-none and max-none. Never-
theless, prop-bfq gets a much higher total throughput than the other policies. According
to the above estimate, this throughput is about 90% of the maximum throughput that
could be reached, for this workload, without violating service guarantees. The reason for
this good result is that bfq provides an effective implementation of the proportional-share
service policy. At any time, each active group is granted a fraction of the current total
throughput, and the sum of these fractions is equal to 1; so group bandwidths naturally
saturate the available total throughput at all times.

Things change with the second workload: a random reader against sequential writers.
Now low-none reaches a much higher total throughput than prop-bfq . Yet the reason
is that low-none serves much more sequential (write) I/O than prop-bfq , because writes
somehow break the low-limit mechanisms and prevail over the reads of the target. Con-
ceivably, this happens because writes tend to both starve reads in the OS–mainly by
eating all available I/O tags–and to cheat on their completion time in the drive. In
contrast, bfq is intentionally configured to privilege reads, to counter these issues.

In particular, low-none gets an even higher throughput than without I/O control,
because it serves the random I/O of the target even less than how none does without
any throttling. A loss of guarantees happens at a lower extent with max-none too, but

9



without much gain in terms of total throughput (because of the max limits).
Finally, with both the last two workloads, prop-bfq reaches even higher total through-

puts than with the first two workloads. It happens because also the target now does
sequential I/O, and serving sequential I/O is much more beneficial for throughput than
serving random I/O. With these two workloads, the total throughput is, respectively,
close to or much higher than that reached without I/O control. For the last workload,
the total throughput is much higher because, differently from none, prop-bfq privileges
reads over asynchronous writes, and reads yield a higher throughput than writes. In
contrast, low-none and max-none still get lower or even much lower throughputs than
prop-bfq , because of the same issues that hindered throughput for these two policies with
the first two workloads.

As for bandwidth guarantees, with readers as interferers (third workload), prop-bfq
expectedly grants to the target a fraction of the total throughput proportional to its
weight. In fact bfq approximates perfect proportional-share bandwidth distribution
among groups doing I/O of the same type (reads or writes) and with the same locality
(sequential or random). With the last workload, prop-bfq gives much more throughput
to the reader than to all the interferers, because interferers are asynchronous writers,
and bfq privileges reads.

Figure 2 reports results for flows with different degrees of I/O randomness: static
with varying randomness (Table 1). These results basically match those for the static
sequential workloads in Figure 1, except for an important point. With respect to the
static sequential workloads, the total throughputs with prop-bfq decrease more or much
more than with the other policies.

This decrease highlights the Achilles’ heel of the bfq I/O scheduler. If the process in
service does sync I/O and has a higher weight than some other process, then, to give
strong bandwidth guarantees to the process, bfq plugs I/O dispatching every time the
process remains temporarily without pending I/O requests. In this respect, processes
actually have differentiated weights and do sync I/O in the workloads in Figure 2. So
bfq systematically performs I/O plugging for them. Unfortunately, this plugging empties
the internal queue(s) of the drive, which kills throughput with random I/O. And the
I/O of some processes in these workloads is also random.

We defined the third group of workloads, static random, exactly to better highlight
this important weakness of bfq . Figure 3 shows results for these workloads. The figure
reports results not only for bfq , but also for an improved version of bfq , containing small
changes to counter this weakness. This new version is currently under public testing, in
the development branch of bfq [15] (where bfq for blk-mq is named bfq-mq).

As can bee seen, with only random readers, prop-bfq reaches an extremely lower total
throughput than throttling policies. Still, the situation reverses with a sequential reader
as target.

Yet, the most interesting results come from the improved version of bfq . It recovers
most of the throughput loss with the workload containing only random I/O. Not only,
with the workload with a sequential reader as target, it reaches about 3.7 times the total
throughput of max-none or low-none.

We finish with the results for the last group of workloads, dynamic sequential/random,

10



low
none

max
none

prop
bfq

0

100

200

300

400

500

Ta
rg

et
, i

nt
er

fe
re

rs
 a

nd
 to

ta
l t

hr
ou

gh
pu

t

9.825 9.741 8.348
41.12 55.64

135.2

I/O policy:
Scheduler:

Interferers:
Target:

seq/rand readers
rand reader

low
none

max
none

prop
bfq

1.905 5.513 20.05

179.9

92.23 58.85

seq/rand writers
rand reader

low
none

max
none

prop
bfq

10.68 9.631

111.2
39.7 56.41

129.4

seq/rand readers
seq reader

low
none

max
none

prop
bfq

14.3 9.559

327.7

107.2 103.6

61.96

seq/rand writers
seq reader

Throughputs for static interferer workloads, made of sync readers or writers, with varying randomness

Cumulative avg throughput of interferers
Avg throughput of target
Avg total throughput (sum of bars)

Avg throughput reached without any I/O control
Min avg throughput to be guaranteed to target

Figure 2: Results for the static with varying randomness workloads.

low
none

max
none

prop
bfq

prop
bfq-impr

0

50

100

150

200

250

300

Ta
rg
et
, i
nt
er
fe
re
rs
 a
nd

 to
ta
l t
hr
ou
gh

pu
t

22.31 9.749 7.517 20.08

86.39

53.95

17.35

77.74

I/O policy:
Scheduler:

Interferers:
Target:

rand readers
rand reader

low
none

max
none

prop
bfq

prop
bfq-impr

17 9.589

112.6

203.2

55.53
54.03

11.3

10.43

rand readers
seq reader

Throughputs for static interferer workloads, made of random sync readers

Cumulative avg throughput of interferers
Avg throughput of target
Avg total throughput (sum of bars)

Avg throughput reached without any I/O control
Min avg throughput to be guaranteed to target

Figure 3: Results for the static random workloads.

11



low
none

max
none

prop
bfq

prop
bfq-impr

0

50

100

150

200

250

300

350
Ta
rg
et
, i
nt
er
fe
re
rs
 a
nd

 to
ta
l t
hr
ou
gh

pu
t

3.488 6.461 5.357 5.402

211.9 214.6
248.4 244.3

I/O policy:
Scheduler:

Interferers:
Target:

seq/rand readers/writers
rand reader

low
none

max
none

prop
bfq

prop
bfq-impr

10.52 9.479

107.3
138.6

157.7

212.5

224.7

207.9

seq/rand readers/writers
seq reader

Throughputs for a dynamic interferer workload, made of seq and rand sync readers and writers

Cumulative avg throughput of interferers
Avg throughput of target
Avg total throughput (sum of bars)

Avg throughput reached without any I/O control
Min avg throughput to be guaranteed to target

Figure 4: Results for the dynamic sequential/random workloads.

shown in Figure 4 (again also for the improved version of bfq). The goal of this group
is to try to subsume the complexity of general, heterogenous and, above all, dynamic
workloads. Results match those for static workloads, and highlight the same issues,
apart from that no policy meets the minimum-bandwidth requirement for the target
when the latter is a random reader. For prop-bfq , it is just a matter of assigning proper
weights for this different workload.

10 Conclusion

When the main concern is the latency of flows containing short I/O, Linux seems now
rather high performing, thanks to the bfq I/O scheduler and the IO latency controller.
Yet, if the requirement is to guarantee explicit bandwidths, or just fairness, to I/O flows,
then one must be ready to give up even most of the speed of the storage media. bfq
helps with some workloads, but loses most of the throughput with workloads consisting
of mostly random I/O. Fortunately, there is apparently hope for much better perfor-
mance, as an improvement, still under development, seems to enable bfq to reach a high
throughput with all workloads tested so far.

References

[1] [Online]. Available: https://lwn.net/Articles/552904

12



[2] [Online]. Available: https://www.kernel.org/doc/Documentation/block/
bfq-iosched.txt

[3] [Online]. Available: http://algogroup.unimore.it/people/paolo/disk sched/results.
php

[4] [Online]. Available: https://youtu.be/ZeNbS0rzpoY

[5] [Online]. Available: https://elciotna18.sched.com/event/DXnF/
a-solution-to-high-latencies-caused-by-io-paolo-valente-linaro

[6] [Online]. Available: https://youtu.be/gyM JJtIvP0

[7] [Online]. Available: https://youtu.be/ANfqNiJVoVE

[8] [Online]. Available: https://youtu.be/1cjZeaCXIyM

[9] [Online]. Available: https://www.phoronix.com/scan.php?page=article&item=
linux417-nvme-io&num=1

[10] [Online]. Available: https://lwn.net/Articles/758963/

[11] [Online]. Available: http://algogroup.unimore.it/people/paolo/pub-docs/
extended-lat-bw-throughput.pdf

[12] [Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-v1/
blkio-controller.txt

[13] [Online]. Available: https://lkml.org/lkml/2017/1/14/310

[14] [Online]. Available: https://lkml.org/lkml/2018/4/24/365

[15] [Online]. Available: https://github.com/Algodev-github/bfq-mq

13


