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Abstract. The recent technological advancements and market trends are causing an interesting phe-
nomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing
(EC) domains. On one side, new kinds of HPC applications are being required by markets needing
huge amounts of information to be processed within a bounded amount of time. On the other side,
EC systems are increasingly concerned with providing higher performance in real-time, challenging the
performance capabilities of current architectures. The advent of next-generation many-core embedded
platforms has the chance of intercepting this converging need for predictable high-performance, allowing
HPC and EC applications to be executed on efficient and powerful heterogeneous architectures inte-
grating general-purpose processors with many-core computing fabrics. This convergence, however, raises
the problem about how to guarantee timing requirements in presence of parallel execution. This paper
presents a novel approach to address this challenge through the design of an integrated framework for
the execution of workload-intensive applications with real-time requirements.

1 Motivation

High performance computing (HPC) has been for a long time the realm of a specific community within
academia and specialised industries; in particular, those targeting demanding analytics and simulations ap-
plications that require processing of massive amounts of data. In a similar way, embedded computing (EC)
has also focused mainly on specific systems with specialised and fixed functionalities and for which timing
requirements were considered as much more important than performance requirements. However, with the
ever-increasing availability of more powerful processing platforms, alongside affordable and scalable software
solutions, both HPC and EC are extending to other sectors and application domains.

The demand for increased computational performance is currently widespread and is even more challenging
when large amounts of data need to be processed, from multiple data sources, with guaranteed processing
response times. As a result, in the last years a new type of applications has been challenging the performance
capabilities of hardware platforms, by crossing the boundaries between the HPC and the embedded computing
domains.

This is the case of real-time complex event processing (CEP) systems[21], a new area for HPC in which the
data coming from multiple event streams is correlated in order to extract and provide meaningful information.
Some interesting real-time CEP systems follow:

– In cyber-physical systems, ranging from automotive and aircrafts, to smart grids and traffic management,
CEP systems are embedded in a physical environment and their behaviour obeys technical rules dictated
by this environment.

– In the banking/financial markets, CEP systems process large amounts of real-time stock information in
order to detect time-dependent patterns, automatically triggering operations in a very specific and tight
time-frame when some pre-defined patterns occur[34].

? This work has been financially supported by the European commission through the P-SOCRATES project (FP7-
ICT-2013-10).



The underlying commonality of the real-time systems described above is that they are time-critical
(whether business-critical or mission-critical) and with high-performance requirements. In other words, for
such systems, the correctness of the result is dependent on both performance and timing requirements, and
the failure to meet those is critical to the functioning of the system. In this context, it is essential to guarantee
the timing predictability of the performed computations, meaning that arguments and analysis are needed to
be able to make arguments of correctness — e.g., performing the required computations within well-specified
bounds.

This paper presents a novel approach to address time-criticality and parallelisation challenges common to
both high-performance and embedded computing domains, in which an integrated framework for executing
workload-intensive applications with real-time requirements on top of next-generation commercial-off-the-
shelf (COTS) platforms based on many-core accelerated architectures is envisioned. The framework, that
will be developed within the P-SOCRATES FP7 project [1], addresses the problem from both the HPC and
real-time computing domains, requiring investigation of new HPC techniques combined with new real-time
methods to fulfil timing requirements. To do so, the main sources of indeterminism of HPC techniques will
be identified, proposing efficient mapping and scheduling algorithms, along with the associated timing and
schedulability analysis, to guarantee the real-time and performance requirements of the applications.

The paper is structured as follows. The next section introduces the trends which are common to the
domains of HPC and EC. Afterwords, Section 3 presents the vision and challenges of the proposed real-time
programming model, which builds upon high-performance programming models, augmented with depen-
dencies and timing information. Section 4 then provides a brief summary of related work, whilst Section 5
summarizes the paper.

2 Trends in High-performance and Embedded Computing Domains

Until now, trends in high-performance and embedded computing domains have been running in opposite
directions. On one side, HPC systems are traditionally designed to make the common case as fast as possi-
ble, without concerning themselves for the timing behaviour (in terms of execution time) of the not-so-often
cases. As a result, the techniques developed for HPC are based on complex hardware and software structures
that make any reliable timing bound almost impossible to derive. On the other side, real-time embedded
systems are typically designed to provide energy-efficient and predictable solutions, without heavy perfor-
mance requirements. Instead of fast response times, they aim at having deterministically bounded response
times, in order to guarantee that deadlines are met. For this reason, these systems are typically based on
simple hardware architectures, using fixed-function hardware accelerators that are strongly coupled with the
application domain.

This section presents the evolution of both computing domains from a hardware and software point of
view.

2.1 Hardware Trends

In the last years, multi-core processors hit both computing markets [33]. The huge computational necessities
to satisfy the performance requirements of HPC systems and the related exponential increments of power
requirements (typically referred to as the power-wall) exceeded the technological limits of classic single-core
architectures. For these reasons, the main hardware manufacturers are offering an increasing number of
computing platforms integrating multiple cores within a chip, contributing to an unprecedented phenomenon
sometimes referred to as the multi-core revolution. Multi-core processors provide a better energy efficiency and
performance-per-cost ratio, while improving application performance by exploiting thread level parallelism
(TLP). Applications are split into multiple tasks that run in parallel on different cores, extending to multi-
core system level an important challenge already faced by HPC designers at multi-processor system level:
parallelisation.

In the embedded systems domain, the necessity to develop more flexible and powerful systems (e.g.,
from fixed function phones to smart phones and tablets) have pushed the embedded market in the same
direction. That is, multi-cores are increasingly considered as the solution to cope with performance and
cost requirements [13], as they allow scheduling multiple application services on the same processor, hence



Fig. 1. Trend towards the integration of HPC and embedded computing platforms.

maximising the hardware utilisation while reducing cost, size, weight and power requirements. However, real-
time embedded applications with time-critical requirements are still executed on simple architectures that
are able to guarantee a predictable execution pattern while avoiding the appearance of timing anomalies
[22]. This makes real-time embedded platforms still relying on either single-core or simple multi-core CPUs,
integrated with fix-function hardware accelerators into the same chip: the so-called System-on-Chip (SoC).

The needs for energy-efficiency (in the HPC domain) and for flexibility (in the embedded computing
domain), coming along with Moore’s law greedy demand for performance and the advancements in the
semiconductor technology, have progressively paved the way for the introduction of many-core systems, i.e.,
multi-core chips containing a high number of cores (tens to hundreds) in both domains. Examples of many-
core architectures include the Tilera Tile CPUs [35] (shipping versions feature 64 cores) in the embedded
domain and the Intel MIC [16] and Intel Xeon Phi [17] (features 60 cores) in the HPC domain.

Thus, the introduction of many-core systems has set up an interesting trend wherein both the HPC and
the real-time embedded domain converge towards similar objectives and requirements. Many-core computing
fabrics are being integrated together with general-purpose multi-core processors to provide a heterogeneous ar-
chitectural harness that eases the integration of previously hard-wired accelerators into more flexible software
solutions. In recent years, the HPC computing domain has seen the emergence of accelerated heterogeneous
architectures, most notably multi-core processors integrated with General Purpose Graphic Processing Units
(GPGPU), because GPGPUs are a flexible and programmable accelerator for data parallel computations
[32, 37]. Similarly, in the real-time embedded domain, STMicroelectronics P2012/STHORM [7] processor,
which includes a dual-core ARM-A9 CPU coupled with a many-core processor (the STHORM fabric); and
the Kalray MPPA (Multi-Purpose Processor Array) [19], which includes four quad-core CPUs coupled with
a many-core processor. In both cases, the many-core fabric acts as a processing accelerator. Figure 1 shows
the trend towards the integration of both domains.

In this current trend, challenges that were previously specific to each computing domain, start to be
common to both domains (including energy-efficiency, parallelisation, compilation, software programming)
and are magnified by the ubiquity of many-cores and heterogeneity across the whole computing spectrum.
In that context, cross-fertilisation of expertise from both computing domains is mandatory. We foresee that
the next step towards the integration of high-performance and embedded computing domains will be the use
of many-core embedded processors such as the STMicroelectronics P2012/STHORM. Such processors will
provide the required performance level, while still being energy-efficient and time predictable. An example
towards this integration is provided by Mont-Blanc and Mont-Blanc2 FP7 projects [24], which is developing
a new hybrid supercomputer based on energy-efficient embedded ARM CPUs coupled with high-performance
NVIDIA GPU many-core processors.



However, there is still one fundamental requirement that has not yet been considered: time predictability
as a mean to address the time criticality challenge when computation is parallelised to increase the perfor-
mance. Although some research in the embedded computing domain has started investigating the use of
parallel execution models (by using customised hardware designs and manually tuning applications by using
specialised software parallel patterns [29]), a real cross-fertilisation of expertise between HPC and embedded
computing domains is still missing.

2.2 Software Trends

Industries with both high-performance and real-time requirements are eager to benefit from the immense
computing capabilities offered by these new many-core embedded designs. However, these industries are
also highly unprepared for shifting their earlier system designs to cope with this new technology, mainly
because such a shift requires adapting the applications, operating systems, and programming models in
order to exploit the capabilities of many-core embedded computing systems. On one hand, neither many-core
embedded processors, such as the P2012/STHORM, have been designed to be used in the HPC domain, nor
HPC techniques have been designed to apply embedded technology. On the other hand, real-time methods
to determine the timing behaviour of an embedded system are not prepared to be directly applied to the
HPC domain and P2012-like platforms, leading to a number of significant challenges. Although customised
processor designs could better fit real-time requirements [29], the design of specialised processors for each
real-time system domain is unaffordable.

On one side, different parallel programming models and multiprocessor operating systems have been pro-
posed and are increasingly being adopted in today’s HPC computing systems. In recent years, the emergence
of accelerated heterogeneous architectures such as GPGPUs, have introduced parallel programming models
such as OpenCL [28], the currently dominant open standard for parallel programming of heterogeneous sys-
tems, or CUDA [26], the dominant proprietary framework of NVIDIA. Unfortunately, they are not easily
applicable to systems with real-time requirements, since, by nature, many-core architectures are designed to
integrate as many functionalities as possible into a single chip. Hence, they inherently share as many resources
as possible amongst the cores, which heavily impacts the ability to providing timing guarantees.

On the other side, the embedded computing domain world has always seen plenty of application specific ac-
celerators with custom architectures, manually tuning applications to achieve predictable performance. Such
types of solutions have a limited flexibility, complicating the development of embedded systems. However,
commercial off-the-shelf (COTS) components based on many-core architectures are likely to dominate the
embedded computing market in the near future. As a result, migrating real-time applications to many-core
execution models with predictable performance requires a complete redesign of current software architectures.
Real-time embedded application developers will therefore either need to adapt their programming practices
and operating systems to future many-core components, or they will need to content themselves with stag-
nating execution speeds and reduced functionalities, relegated to niche markets using obsolete hardware
components.

This new trend in the manufacturing technology and the industrial need for enhanced computing capabil-
ities and flexible heterogeneous programming solutions of accelerators for predictable parallel computations
bring to the forefront important challenges for which solutions are urgently needed. To that end, we envision
the necessity to bring together next-generation many-core accelerators from the embedded computing domain
with the programmability of many-core accelerators from the HPC computing domain, supporting this with
real-time methodologies to provide time predictability.

3 Towards a Real-time Parallel Programming Model

The use of parallel programming models is fundamental to exploit the performance out of parallel architectures
and provide good programmability (and so productivity) of high-performance systems. Among the different
models, OpenMP [2] has become one of the most used parallel programming models due to its simplicity and
scalability in shared memory systems such as current many-core processors. OpenMP defines task annotations
to represent independent units of work that can run concurrently. Recently, OpenMP has been extended with
new directives, in, out and inout, that allow introducing asynchronous parallelism by defining dependencies
among task.



void compute ( int ∗A, int ∗B, int N) {
for ( int i =0; i<N; i++) {

#pragma omp task in (A[ i −1]) inout (A[ i ] ) out (B[ i ] )
foo (&A[ i −1] ,&A[ i ] ,&B[ i ] ) ;

#pragma omp task in (B[ i −1]) inout (B[ i ] )
bar(&B[ i −1] ,&B[ i ] ) ;

}
}

Fig. 2. OpenMP 4.0 code sample showing the data-flow dependencies among tasks.

Fig. 3. OmpSs parallel programming framework.

Figure 2 shows a source code example using the dependency annotations. Each instance of task foo
depends on data generated in previous loop iterations — i.e., inout(A[i-1]). Similarly, the task bar depends
on foo outcome — i.e., out(B[i]).

This extension increases the freedom of task scheduling: tasks are scheduled for execution as soon as all
depend tasks finished and there are available processor resources.

OmpSs [12] is a parallel programming framework compatible with OpenMP 4.0 whose effectiveness has
been widely demonstrated in the HPC domain [10]. In OmpSs, the data-dependencies annotations are inter-
preted by a compiler, Mercurium, that emits calls to the runtime system Nanos++. Nanos++ is a parallel
run-time system that dynamically generates the task dependency graph (TDG) at run-time. Each time a new
task is created its in and out dependencies are matched against those of existing tasks. If a dependency,
either read-after-write, write-after-write or write-after-read, is found, the task becomes a successor of the
corresponding tasks. Tasks are scheduled for execution as soon as all their predecessor in the graph have
finished and there are available processor resources. Figure 3 shows the complete system stack of OmpSs.

Current parallel frameworks base scheduling decisions on information available at run-time — i.e., the
task dependency graph and processor resources availability (see Figure 3) — which makes it difficult to
provide real-time guarantees. The reason is that the way tasks use shared processor resources determines the
interferences that different tasks will suffer when accessing them, affecting the overall execution time of the
application. A different usage of processor resources will result in a different execution.

In order to provide real-time guarantees without suffering any performance degradation, it is required to
statically identify at design time which run-time configuration is needed, so the usage of shared processor
resources is fixed and time guarantees can be provided. Therefore, it is of paramount importance to recover,
at design time, relevant information to fix the usage of processor resources and so provide timing guarantees.
Next sections provide our vision of how to address this challenge.

3.1 Vision

One of the main objectives when developing new time-criticality frameworks is to facilitate the transfor-
mation of current applications, designed to be executed on single-core platforms, to parallel multi-threaded



Fig. 4. Envisioned real-time parallel programming framework to provide timing guarantees.

applications, as well as to facilitate the design of new parallel applications. IT companies develop applications
facing three important challenges:

– Productivity. Applications must be developed in a given time frame to accomplish time-to-market re-
quirements.

– Flexibility. Applications must be easily adapted to multiple platforms.
– Performance. Applications must exploit all performance opportunities of the platform in which they run.

Therefore, it is fundamental to develop methodologies to easily extract parallelism from current and future
applications without significantly changing the development processes, to let industry reuse its current test
cases. One of the targets is to allow application providers to reuse their modelling techniques, taking full
advantage of the computing power unleashed by the newest many-core platforms. Such transformation must
be translated into less development time and potentially faster, cheaper time-to-market.

Our proposal is to extend parallelism annotations, which are extracted by the compiler, to identify portions
of the application (tasks) that can run in parallel as well as relevant information to derive the impact on
execution time due to sharing resources when tasks communicate. To do so, new compiler techniques must be
developed to generate an extended task dependency graph (eTDG), containing relevant information required
by the mapping and scheduling tool and the timing analysis method to allocate tasks to the different processor
resources, guaranteeing that the real-time constraints of the application are accomplished. In other words, in
order to provide timing guarantees, there is a necessity to fix the usage of shared processor resources.

Figure 4 shows the envisioned real-time parallel programming framework in which relevant information
for task scheduling and timing analysis is recovered at compile- and design-time to fix the usage of processor
resources.

3.2 Research Challenges

The envisioned approach presents multiple research challenges at compile-time and at design-time. This
section summarizes the most important ones.

At compile-time, if all information is recovered, one could potentially provide tight execution bounds.
Unfortunately, not all information can be recovered at compile time as there is information only available
at run-time. This is the case, for instance, of data dependencies based on pointers, variable values or loop
boundaries. In Figure 2, if the number of iterations (N) is not known, we cannot determine how many task
instances of foo and bar will be executed and so the eTDG cannot be generated. Similarly, in Figure 5, if
i and j values are not known at compile-time, it is not possible to determine if a data-dependency among
tasks produce and consume exists.

In case the data-dependency cannot be solved or loop boundaries are not known at compile-time, it is
required to consider conservative approaches in order to guarantee the functional correctness of the program.



void compute ( int ∗A, int i , int j ) {
#pragma omp task inout (A[ i ] )

produce(&A[ i ] ) ;

#pragma omp task inout (A[ j ] )
consume(&A[ j ] ) ;
}

}

Fig. 5. The value of i and j must be known to determine the dependency among tasks producer and consumer.

Fig. 6. Extracting information at compile-time increases guaranteed performance at the price of reducing the average
performance due to conservative decisions.

Thus, if there is an unknown data-dependency, the construction of the eTDG must consider that this data-
dependency exists. Similarly, if a loop boundary is unknown, it is required to determine an upper bound of
the maximum number of loop iterations [3]. Needless to say that following a conservative approach will affect
the average performance of the application. That is, false data-dependencies in the eTDG will force tasks to
be executed sequentially. Similarly, assuming loop boundaries with higher number of iterations will make the
eTDG to contain a higher number of task instances than the ones actually created, over-dimensioning the
system due to tasks that are never executed.

Figure 6 shows the expected trends in the average and guaranteed performance when following conservative
approaches. X-axis represents different levels of data recovered at compile-time, so the usage of processor
resources can be fixed. As more information is extracted at compile-time, a more precise eTDG can be built
and so higher guaranteed performance can be provided (light blue curve). However, due to the conservative
approaches, the eTDG can differ from the TDG created at run-time, so that the average performance can
be degraded (dark blue curve). Although counter-intuitive, it may happen that, in order to increase the
guaranteed performance, a core is kept idle even when there is some pending workload to execute.

At design-time, it is necessary to provide the system with appropriate means to map the task dependency
graphs to the underlying operating system threads (mapping), and dynamically schedule these threads to
achieve both predictability and high-performance (scheduling). Although previous works [18, 14] have shown
that run-time characterisation and management of locality has more potential than static locality analysis,
dynamic information usage is a stopper to provide the timing guarantees for parallel applications on a many-
core. Therefore, further research about how to allocate tasks to processor resources is needed, accounting for
the impact of such allocation on other tasks due to interference when accessing shared resources. To that end,
the programming model needs to be extended so that the responsibility for managing locality is shared among



the programmer and the mapping tool. This will allow providing timing guarantees to application customers
while also providing maximum performance. Data annotations with in/out clauses provide a reasonable
balance between the programmer and the system in managing locality [12], but further research is needed to
minimise the interferences when accessing shared resources.

As a complement to the design of the scheduling algorithms, the real-time scheduling theory focuses on
designing application, scheduler, and platform models and developing tools and techniques that together allow
the timing behaviour of the entire system to be anticipated, modelled and analysed. Most of the analyses
that can be found in the real-time scheduling literature assume that the system activities are functionally
independent. An outgrowth of this assumption is to assume some of the key timing parameters to be constant,
exact, and known at design time — e.g., the worst-case execution time of an activity is commonly assumed
to be known at design time and invariant. However, when deployed on the same hardware architecture,
activities that are co-scheduled on different cores share some low-level hardware resources, such as caches,
communication buses and main memory. These shared resources inherently introduce functional dependencies
between the activities as concurrent accesses to the same resource are not allowed; the timing behaviour of
activities sharing the same resource is thus affected. Therefore, the existing techniques cannot be applied, but
need to be augmented by further analyses to factor-in all the sources of contention due to shared resources.
Preliminary results toward this direction have already been presented (e.g. [23, 11])

Moreover, these challenges need to be tackled in a holistic, integrated perspective. Our proposal is to
construct the eTDG graph in synergy with the mapping and scheduling algorithms, with feedback from the
timing and schedulability analysis. The strategy cannot be to search for all possible combinations in the
whole design space. A guided process needs to be introduced, which is able to reason on the best mapping
for a particular result.

4 Related Work

In what concerns programming models, the HPC world has seen a plethora of proposals for data or task
parallelism (e.g. [4, 36, 15]). Furthermore, approaches such as [18] or [2, 12] also allow expressing dependencies
among tasks, being the run-time system responsible of the dependencies to be satisfied before spawning
dependent tasks. Task-based models can be dynamically managed by mapping the tasks to threads in a
thread pool, e.g., using the popular Work-Stealing algorithm [8]. Yet, sources of non-determinism at run-
time cause timing divergences among threads. Dynamic schedulers try to compensate by detecting them at
run-time [9, 27] and either (i) ”re-moulding” into more threads on-the-fly; (ii) boosting relative priorities,
or (iii) adapting the mapping and number of allocated processing units. Since performance is the major
goal, mapping strategies are mostly dynamic in nature, and, although being able to provide better average
behaviour, they may allow for unpredictable unbounded delays.

General purpose computation on graphics processing units (GPGPUs) has also received a lot of attention,
as it delivers high performance computing at rather low cost. GPUs are many-core computing fabrics that,
integrated together with general-purpose processors, result in flexible and programmable accelerator for data
parallel computations, programmed in frameworks such as OpenCL [28] or CUDA (Compute Unified Device
Architecture) [26]. This approach also does not allow for supporting time-predictability and moreover is
specific to SIMD operations.

In the real-time community, scheduling techniques have been the subject of extensive research. Traditional
techniques have been extended for the multiprocessor case and more recently for parallel execution (e.g.[20, 31,
5, 25]). After the majority of the works considering 1-to-1 mappings, where each parallel execution is mapped
to a thread, new models are appearing with more complex mapping approaches. Different mappings of parallel
tasks to threads can be done, mostly statically [31, 5] but also dynamically [25], in order to increase system
utilisation whilst maintaining predictability. These strategies need however to be extended for exploiting the
dependency graphs from compiler generated parallel task graphs.

The real-time community is also providing extensive research on timing and schedulability analysis. The
objective of timing analysis is to compute tight bounds (or probabilistic profiles) on the time needed to
perform an operation executed in isolation. Schedulability analysis is then used to check analytically, at
design or run time, whether all the timing requirements of the system will be met.

Static approaches for timing analysis typically infer timing properties from mathematical models and
logical abstractions (e.g., [3]), while measurement-based techniques exploit the results of extensive simulations



to derive worst-case estimations. Hybrid techniques combine features from both static and measurement-
based approaches while avoiding (as much as possible) their respective pitfalls (e.g. [30]). In what concerns
schedulability analysis, different tests have been proposed for various kinds of workload and platform models,
and for different scheduling algorithms. In its simplest form, a schedulability test is just a mathematical
condition such that, if the condition is satisfied, then the system is deemed schedulable, i.e., all the deadlines
will always be met at run-time. Unfortunately, there are still many open problems and NP-hard issues in the
schedulability analysis of multi-core systems [6]. Furthermore, timing and schedulability analysis cannot be
taken in isolation from the mapping approach, since the mapping of tasks to particular cores clearly impacts
the timing analysis.

5 Conclusions

There is currently an increasing interest in the convergence of High-Performance and Embedded Computing
domains. Not only new high-performance applications are being required by markets needing huge amounts
of information to be processed within a bounded amount of time, but also embedded systems are increasingly
concerned with providing higher performance in real-time, challenging the performance capabilities of current
architectures. Meeting this dual challenge can only be provided by next-generation many-core embedded plat-
forms, guaranteeing that real-time high-performance applications can be executed on efficient and powerful
heterogeneous architectures integrating general-purpose processors with many-core computing fabrics.

This paper proposed a novel approach to address time-criticality and parallelisation by an integrated
framework for executing workload-intensive applications with real-time requirements on top of next-generation
commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The framework,
that will be developed within the P-SOCRATES FP7 project [1], addresses the problem from both the HPC
and real-time computing domains, integrating the extraction of task dependency graphs with timing informa-
tion from the applications code, with real-time mapping and scheduling algorithms, along with the associated
timing and schedulability analysis.
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